Адаптер для питания ноутбука в машине. Адаптер для питания ноутбука в машине Некоторые параметры микросхемы




В путешествие по Кавказу мы как и все туристы взяли с собой кучу электроники: 2 телефона, зеркальный фотоаппарат, мыльница, 2 жпса (автомобильный и туристический), зарядки для аккумуляторов фонарей, переносная радиостанция и ноутбук. Согласен - тут много лишнего, но ведь опыт - сын ошибок трудных:)

Самая большая проблема всего этого барахла - его нужно заряжать. Почти все современные устройства питаются либо от 5 Вольт, либо от 12, и благо в автомобиле есть оба напряжения. Но есть и относительно проблемные устройства: ноутбук и зеркалка, на которые нужно 220В для родной зарядки, или контроллер заряда 2S лития от 12 Вольт.Редко какой ноутбук сейчас работает от 12 вольт - это древние нетбуки требовали такого напряжения. Современные же почти все весьма прожорливые, хотят питаться от 18-20 Вольт и съедают, как правило, до 3 Ампер.

Вот у меня как раз такой помощник штурмана и лежит - Itronix IX-250. Это воистину не убиваемый кирпич, который можно использовать как табуретку, подставку под домкрат, сендтрак, доску для нарезки овощей и после этого открыть в нем карту и ехать дальше.

Собственно, этому товарищу нужны те самые 19В @ 3А которых штатно в машине не найти. Многие делают просто - покупают инвертор, который втыкают в прикуриватель, в инвертор обычную сетевую зарядку метра три длинной, и туда уже ноутбук. Получается следующее преобразование: =12В - ~220В - =19В.

Данная конструкция имеет единственный плюс - через инвертор можно заряжать не только ноутбук, но и другие штуки, типа той же зеркалки.

Однако, минусов намного больше:

Ооочень длинная борода конструкция, которая в длительной поездке, а тем более на соревнованиях будет постоянно мешаться под ногами.
кпд этой цепочки стремится к нулю:) на каждом преобразователе (инвертер+бп ноутбука) будет теряться до 10-30% энергии просто на нагрев воздуха.
покупать инвертор с модифицированным синусом мне не позволяют внутренние предубеждения и техническое образование, а хороший - с чистым синусом стоит приличных денег, и покупать его только для ноута сильно накладно.
качество недорогих инверторов оставляет желать лучшего, и это опасно для ноутбука.

Рассмотрев возможные варианты подключений я остановился на повышающем DC-DC преобразователе. То есть, будем поднимать напрямую постоянные 12(14)В бортовой сети в постоянные 19В. Такой преобразователь можно купить готовый, но те что были представлены в локальных магазинах совсем не внушали доверия: не вентилируемый пластиковый корпус, тонюсенькие провода, хлипкий пластик… Да что там говорить - у меня на работе такой, раскаляется аки чайник и начинает вонять.

Я решил попробовать заколхозить подобную штуку сам. Не буду лукавить - я не рассчитывал, и не разводил плату а воспользовался уже готовой:

150W Boost Converter DC to DC 10-32V to 12-35V
Входное напряжение: 10-32В
Выходное напряжение: 12-35В
Мак. выходной ток: 6А
Макс. ток на входе: 10А

В открытом виде, как понимаете, использовать его в машине невозможно, потому неплохо было бы найти для платы шкурку. Например :

Преобразователь предварительно нужно было немного допилить: зашунтировать электролитические конденсаторы керамикой для фильтрации ВЧ шума, и подправить обратную связь шим контроллера как советует .

Взяв в руки плату и корпус становится очевидно, что в коробочку плата с радиаторами не влезет, да и без - тоже. Чтобы впихнуть невпихуемое решено было выпаять радиаторы, силовые элементы (диодную сборку и мосфет) и подрезать на заточном станке плату до нужных размеров.

После срезания одного торца пришлось дорожку восстановить проводом, и пользуясь случаем выпаял светодиод и клемники - они там не нужны. Ноги силовых элементов пришлось изогнуть так, чтобы теплорассеивающая часть была на одном уровне с новым краем платы для хорошего контакта с новым «радиатором».

Диодная сборка и мосфет были посажены на термопасту через терморезиночку прямо на аллюминиевый корпус служащий радиатором и надежно закреплены винтом.

В качестве разъема был выбран GX16-4 - это «авиационный» 4х контактный разъем выдерживающий токи до 15 ампер по паспорту. По двум штырькам я пустил входящее напряжение, а по оставшимся двум - выходящее повышенное. Плюсом такого разъема является его относительная герметичность и надежная фиксация штекера.

Предвидя тяжелые условия эксплуатации я позаботился и о кабелях: входной был взят термостойкий многожильный 2*1мм2 в двойной силиконовой оболочке (Basoglu SIMH). Честно говоря, я даже не ожидал такого качества - кабель очень мягкий, приятный на ощупь, внутри внешней оболочки провода в тальке, паяется отлично. В качестве выходного использовал обычный ноутбучный коаксиал. Это как правило очень износостойкие кабели с хорошим сечением. Я давно уже использую такие для поделок, где на кабель будут приходится постоянные нагрузки. Штекер для ноутбука напаял из того что было (временно).

Оба кабеля с небольшими ухищрениями заделал в разъем, а на тонкий кабель надел пружинку - такая конструкция очень сильно продлевает жизнь кабелей около разъемов, т.к. намного увеличивает радиус изгиба и предотвращает заломы. Не лишним будет и ферритовое колечко на выходную линию для гашения помех.

Удобнее, конечно, было бы использовать две розетки в корпусе - на вход и на выход с разных сторон. Это и в монтаже удобнее, и «проходная» конструкция удобнее в эксплуатации. Но каждая пара папа-мама локально стоит 200р, сэкономил.

При желании и небольших усилиях конструкцию можно сделать полностью герметичной, ведь и у корпуса и у разъема уже есть задел на это.

Я своим ноутбуком смог нагрузить преобразователь только на 3.6А @ 11.8В на входе, при этом за 20 минут работы на таком токе корпус прогрелся немного сильнее окружающей температуры. Пирометр показывает 32,3°С. Измерять температуру алюминиевой коробки пирометром не совсем корректно, но даже после закрашивания области черным маркером показания не изменились.

Вот так выглядит вся конструкция в машине, ноут без аккумулятора для подтверждения работы. Пол часа работы ноутбука на холостом ходу никак не сказались на температуре преобразоателя, тем более от 13,8В бортовой сети ему будет работать проще, чем от 11.8В дома.

Бюджет вышел около 1000 рублей учитывая что половина деталей бралась в Китае. Если брать все локально - можно цены смело умножать на два.

Теперь о впечатлениях.
На мартовских выходных откатал аж двое соревнований: «Весенний прорыв» штурманом на боевом УАЗе и приуроченные к 8 марта «Королева авто», уже пилотом, на своей машине.

Уже на первых соревнованиях я оценил всё удобство зарядки - ничего нигде не висит и не болтается. Я зарядку включил в прикуриватель и все засунул под сиденье, а оттуда к ноуту шел один единственный кабель питания. Бп, кстати, почти не греется. Был момент, когда я не заметил, как вывалился штекер питания из ноута, и он около часа работал от батареи, после чего блоку питания пришлось тянуть и зарядку батареи, и работу ноута. А все усугублялось еще тем, что в уазе на полную работала печка дующая в ноги - аккурат под сиденье, и в этот момент корпус блока питания был по ощущениям градусов 45-50, то есть немного горячее, чем теплый.

Еще раз убедился в том, что сделал правильно, что купил толстый кабель - часто получалось так, что при крутом уклоне капотом вниз БП вылетал под ноги, и я какое-то время топтался по нему. Очевидно, тонкий кабель в таких условиях умрет намного быстрее.

Единственное, что, пожалуй, стоит изменить в связке БП - ноутбук - это разьем питания самого ноутбука. Нужно поставить туда что-то типа GX16-2, такого как на блоке питания. Это позволит предотвратить случайные выпадания штекера и вероятность облома гнезда от материнской плате в ноутбуке при рывке за кабель.

Рассказать в:


Цели были поставлены такие:
1. В первую очередь автор ставил перед собой коммерческий интерес этого проекта, поэтому себестои-мость должна была стремиться к нулю.
2. Простая схемная и практическая реализация (100% повторяемость).
3. Малые габариты, малый нагрев (никаких торчащих вверх радиаторов и принудительного охлаждения), низкопрофильность (последнее обусловлено наличием у автора корпусов от БП принтеров, сканеров:).
4. Преобразователь должен подходить для ВСЕХ НОУТБУКОВ (при необходимости мог на определённое время выдавать мощность не менее 120 Вт, характерную для начала заряда батарей мощных ноутбуков).

Свои поиски начал с Интернета и вот что он мне родил:
1. Схема неизвестного автора.

Собрав эту схему и подтвердив свои предположения, что выходной драйвер UC3843 на частоте комму-тации в 150 кГц (данная частота соответствует указанным номиналам R2,C2) даёт такие завалы фронтов управляющих импульсов на затворе VT1, что это приводит к недопустимому (по мнению автора) нагреву ключа за счет динамических потерь во время коммутации. Добавив внешний драйвер на дискретных эле-ментах ситуация поправилась но поставленным целям результат всё же не удовлетворял. Из неё при нор-мальной температуре (не выше 60 градусов) больше чем 3,5А не выжать. Да и потери в токоизмерительном резисторе достаточно велики, что придаёт ему не только габариты, но и нагрев, а в закрытом корпусе это будет решать многое. Нельзя не сказать и о плюсах данного схемного решения. Высокая частота коммута-ции автоматически уменьшает значения входных и выходных конденсаторов, хотя в тоже время предъявля-ет высокие требования к их качеству (низкое Эквивалентное Последовательное Сопротивление), да и зна-чение индуктивности относительно не велико, что позволяет уменьшить её габариты при хорошем железе.
2. Схема от автора Michael Schon.

Всё бы ничего (кроме заявленного в КПД 96%, хотя ни в одной справочной литературе по проектированию и практической реализации данных преобразователей автор не нашёл таких возможных данных, а везде была указана планка в 89% с чем я абсолютно согласен), но эта схема и особенно её практическая реализация не соответствовала ни одному требованию. Поэтому автор собирать и экспериментировать с ней не стал. Может за границей можно и всё купить или даже заказать, но где это набраться столько конденсаторов, да и габарит дросселя с радиаторами не удовлетворяли.

Было решено делать самому и из того, что есть! А так как автор по совместительству занимается ремонтом компьютеров, то делать из чего - было. Основным направлением построения схемы стало увеличение рабочей частоты входного и выходного фильтра с целью уменьшения их ёмкости и габаритов соответственно, а так же распределение нагрузки а, следовательно, и тепловых потерь, за счет введения второго силового канала. К такой схематехнике подтолкнуло изучение многофазного формирования питания процессоров на материнских платах. Откуда в принципе и были взяты все необходимые детали. Только в качестве ШИМ-контроллера была выбрана изъезженная TL494 (стоит практически в каждом БП для ПК старше 2-3х лет) а, не 4х-фазная SC2643VX c материнской платы. Практически все необходимые компоненты были взяты с материнской платы фирмы EPOX (таких у автора стопка под потолок). Ну и вот что получилось:

Обвязка TL494 практически идентична стандартной обвязке в БП для ПК за исключением того, что осциллятор имеет рабочую частоту около 290кГц (к сожалению, в документации на микросхему указана планка в 300 кГц). Хочется заметить что цепочка плавного пуска (R12,C7) в любом повышающем преобразователе имеющем такую схематехнику просто обязательна, так как преобразователь, работающий в непрерывном режиме тока дросселя (кода запасённая энергия в дросселе сохраняется до следующего такта заряда) имеет медленную переходную характеристику, то вероятность перенапряжения оказывается очень большой. А плавный пуск исключает перенапряжения на T1 и T2, хотя и остаётся вероятность перенапряжения в результате сброса нагрузки, но это беда всех преобразователей такого плана. К счастью этот преобразователь может войти в такой режим только при коэффициенте заполнения от 50% и выше, но это ограниченно самой микросхемой, так что волноваться незачем, но перестраховаться не помешает. Что касается измерения и ограничения тока, то для измерения был использован кусок проволочного шунта от старой Цешки длинной около 10-15мм (10-12 мОм). Верхний по схеме усилитель, входящий в состав IC1, осуществляет токоограничение, а вариацией резисторов R3, R4 можно установить необходимый уровень. Хочется заметить, что в любом гальванически не развязанном повышающем преобразователе, понятие токоограничение, довольно относительное, ведь при коротком замыкании в нагрузке ток с помощью ШИМ-контроллера не ограничить - ведь даже при закрытых ключах T1 и T2 ток КЗ потечёт через диоды D1 и D2, а "уровень токоограничения" подразумевает, что схема будет ограничивать ток через дросселя и ключи и как следствие при непомерной нагрузке просто будет падать выходное напряжение преобразователя. Поэтому предохранитель F1 просто обязателен на экстренные случаи.
В преобразователе использованы специализированные микросхемы SC1211 представляющие собой драйвера для понижающего преобразователя с функцией синхронного выпрямления (для тех, у кого не найдётся материнской платы с ними, то можно использовать и другие подходящие такие как RT9601, RT9602 и многие другие которые, кстати, есть и на видеокартах, с соответствующей коррекцией схемы, но ниже будет схема драйвера и на дискретных элементах). Была задумка и в этом устройстве реализовать синхронное выпрямление, но так как SC1211 драйвер для понижающего преобразователя, то в нем не реализовано запирание верхнего синхронного ключа в функции направления тока дросселя, а наоборот реализовано для нижнего (понятие "верхний" и "нижний" автор использует с учётом того, что вместо D1 и D2 стоят МОП-транзисторы и с ключами T1 и T2 они образуют полумосты). А без этой функции драйвера в режиме прерывистого тока дросселя обязательно наступит момент, когда запасённая энергия в дросселе закончится и наступит время работы выходного конденсатора, только этот этап не будет отслежен, и ток из конденсатора потечёт не только в нагрузку, но и в шину +12В через синхронный выпрямительный ключ и дроссель. Это и есть нежелательный режим. Поэтому этот проект пока в разработках, да и его применение на малых мощностях экономически не обосновано.
Что касается обвязки SC1211 то номиналы R5 и R6 увеличивать не рекомендую, так как при значении в 10кОм сигнал на входе переключения СО(4)-SC1211 имеет пилообразную форму (за счёт ёмкости входа), что приводит к задержке заднего фронта выключающего ключ и как следствие вводит дополнительный ноль в передаточную характеристику контура регулирования, а из-за этого может возникнуть нестабильность и возбуждение системы. Ёмкости С8 и С9 должны быть достаточными для того чтобы их хватило для гарантированного заряда ёмкости затворов ключей в противном случае вся работа ляжет на внутренний источник стабилизированного напряжения SC1211 с последующим его перегревом (во время наладочных работ случайно отвалившийся конденсатор привел к моментальному образованию дыры в SC1211).

Детали.
Как я уже говорил, практически все необходимые детали были взяты с материнских плат. Прилагаю фото донора (материнская плата фирмы Elitegroup модель K7S5A, хотя автор предпочитает использовать платы с драйверами SC1211, просто предполагает, что желающим собрать преобразователь достать такие платы может и не удастся):



Зелёной стрелкой на фото №5 указаны нужные "органы". Данный экземпляр имеет на борту и кольцевые дросселя, ключи, диоды Шотки и входные конденсаторы с хорошим ЭПС (ВНИМАНИЕ! На K7S5A напряжение входного конденсатора в зависимости от версии платы может быть 6,3В), и даже TL494, а зелёными овалами на фото №6 отмечены планарные полевые транзисторы (маркировка на корпусе sSG25 или 702, это всё 2N7002 от разных производителей) для использования в дискретном драйвере. Таких на любой "мамке" валом только присмотреться. Кстати в районе звукового чипа (обычно маркируются ALC668: в зависимости от установленного) есть и стабилизатор 78L05 который можно использовать для формирования питания затворов силовых ключей. Поднять уровень можно с помощью двух диодных сборок с маркировкой A7W до уровня 7-8В, так как во многих источниках указано напряжение 8,5В, как оптимальное для затворов низкоуровневых ключей с точки зрения уменьшения динамических потерь. На схеме этот узел в красном пунктире, его можно реализовать и обычным параметрическим стабилизатором. Делать его выше 8В не рекомендую, так как будет маловата разница между +11В на входе (при наихудшем варианте "аккумулятор разряжен") и +8В, а этот уровень будет использоваться для управления верхним ключом полумоста драйвера.
Хотелось бы немного остановиться на изготовлении параллельных повышающих дросселей L2 и L3. На материнских платах есть кольцевые, и штыревые в противозвенящем кожухе (квадратные). Предпочтительнее кольцевые, так как процесс изготовления будет проще. Необходимо имеющуюся проволоку смотать, и намотать, две проволочены в параллель (больше двух у меня не помещалось) диаметром 0,6мм каждая, около 18-20 витков (это бывает непросто ведь окно небольшое). В процессе работы дросселя греются, но не само железо, а проволока, что говорит о нехватке поперечного сечения проводника и о приличном влиянии скин-эффекта но, это, к сожалению, цена за низкопрофильность, кстати, это одна из причин по которой было принято решение об использовании двух параллельно работающих катушках. Повторяемость катушек 100% так как все они стояли в одном месте и тоже работали в параллель. Да и поиски сердечника удовлетворяющего требованиям ничего не принесли ведь большинство доступного работало в диапазоне 60-100кГц, а на материнской плате каждый из сердечников работал приблизительно на частоте коммутации в 300кГц и с коэффициентом заполнения не более 20% что говорит о его хороших магнитных свойствах.
Режим работы преобразователя смешенный. Каждый канал по отдельности работает в режиме прерывистого тока, что обеспечивает быструю переходную характеристику и уменьшение потерь во время коммутации на ключе, так как он закрываясь не разрывает ток своего дросселя который течёт в нагрузку (к тому времени работает уже другой канал и диод этого канала смещён в обратном направлении). А работая вместе на одну нагрузку два канала обеспечивают непрерывный ток в нагрузке за счёт своих токов дросселей, практически не прибегая к помощи конденсатора на выходе. Выходной конденсатор существенно работает только при малом коэффициенте заполнения, когда есть провалы между токами дросселей. Хочется отметить, что расчёты индуктивности проводились как для одноканального преобразователя работающего в режиме прерывистого тока дросселя, а расчёты выходной ёмкости проводились как для одноканального преобразователя с удвоенной частотой и непрерывным током дросселя. Испытания показали, что двухканальная схема впитала в себя преимущества двух режимов. А именно: режим прерывистого тока дросселя каждого из каналов даёт быструю переходную характеристику и малые потери на ключе, а так как токи двух дросселей налагаются друг на друга, то в результате на выходе получается непрерывный ток обоих дросселей удвоенной частоты и выходной конденсатор требуется очень маленький (по расчётам около 50мкФ на 100мВ пульсаций на выходе). Но автор решил не скупиться, поэтому выходного конденсатора в 100-470мкФ с ЭПС не более 0,3 Ом будет предостаточно, тем более габарит будет небольшой (ЭПС можно немного уменьшить запаралелив его керамическим или полимерным конденсатором).
Что касается ключей Т1 и Т2, то это N-канальные UltraFEET c очень низким Rdson (сопротивлением открытого канала) и они всё от туда же, и их типовые параметры 30V напряжение сток-исток и 50-80А пиковый ток. Будьте осторожны на некоторых платах есть экземпляры на 20В, что будет чревато: В качестве их замены предлагаю IRFL44 (выбор обусловлен ценой и доступностью).
Дроссель L1, C18 и С19 являются опциональным заградительным фильтром от ВЧ помех в бортовую сеть автомобиля и при бюджетности конструкции их можно не устанавливать.
Устройство можно дополнить цепями сигнализации наличия выхода +19В и предупреждения о том, что аккумулятор садится. Вот мои варианты:
Возможно, потребуется подбирать напряжение стабилитрона ZD6 под уровень зажигания красного светодиода, в зависимости от вашего предпочтения о предупреждении. Со светодиодом, у которого прямое падение около двух вольт, и стабилитроном на 6В порог находится около 11В на аккумуляторе (так как выход стабилизирован).


В схеме с драйверами на дискретных элементах использована классическая парафазная схема на полевых ключах (можно использовать любые современные N-канальные транзисторы малой мощности). Автор намеренно не использовал драйвер на N и Р-канальных ключах, так как Р-канальных на мамках не очень много, да и не основные носители не внушают доверия.
А вот и схема с драйверами на дискретных элементах:

Сборка и наладка
1. Разводим плату разделяя при этом силовые цепи от сигнальнах.
2. Запаиваем все компоненты и проверяем частоту на затворах силовых ключей (около 145кГц), а также смотрим крутизну фронтов.
3. Наматываем дросселя (18-20 витков, но один конец оставляем длинной около 10см).
4. Припаиваем один дроссель, включаем и проверяем выход +19В (подстраиваем с помощью R7-R11.).
5. Находим подходящую нагрузку и нагружаем ампера на 3.
6. Нехитрыми манипуляциями замеряем КПД (при стабильных нагрузке и входном напряжении можно ориентироваться на входной ток) и если оно в пределах 88-89% то всё в норме.
7. Выключаем и доматываем, если есть куда, витка три. Повторяем пункт 6 и делаем вывод что лучше.
Подобрав, таким образом, лучшее значение индуктивности для данной катушки её отпаиваем и проводим такие же манипуляции для другой, уравнивая их показания. Это необходимо для равномерного распределения нагрузки и потерь.
8. Запаиваем обе катушки и включаем, нагружаем, проверяем:
9. После того как мы убедились, что всё работает, настраиваем токоограничение. Делается это подачей максимальной выбранной нагрузки (выходной ток 8А,6А,5А:) и уменьшением номинала R3 до того момента пока не начнёт падать выходное напряжение. Это и будет порогом токоограничения. Если использован совсем короткий и низкоомный шунт, то возможен вариант, когда R3 выкорочен, а выходное напряжение не упало. Тогда необходимо увеличить номинал R4 в два-три раза и повторить настройку.

Тепловой режим
Хочется особо отметить, что основные потери и нагрев достаточно локализованы и ограничены диодами D1 и D2 и собственно потерями в меди катушек. При нагрузке в 6А(19В) происходит постепенный и уверенный подогрев диодов примерно до 40-50 градусов (планарный монтаж), поэтому, припаяв небольшие медные пластинки возле диодов можно немного улучшить их состояние с учётом того, что с увеличение их температуры, потери на них тоже увеличиваются (увеличивается обратный ток утечки, который на такой частоте и при таких токах и без того не мал), откуда и вытекают потери процентов КПД. Надеюсь синхронное выпрямление решит и эти вопросы.


На фото одна из сторон готовой платы. Несмотря на допустимые отклонения от рекомендуемых номиналов и способов изготовления этот экземпляр показал свою полную работоспособность при выходном токе 8А и выходном напряжении 19В. Так же на фото видно те самые пластинки возле одной из диодных сборок. Не удивляётесь что диодная сборка в D2PAC, а ключ в DPAC. При нагрузке менее 100 Вт ключ практически не греется, а той меди, к которой он припаян, вполне хватает для его охлаждения.

Итог

Итак, у нас получилось, что из одной материнской платы с 4х фазным питанием процессора и с применение SC1211 можно собрать два таких преобразователя, даже если во время наладочных работ спалить пару тройку ключей (на плате их минимум 12 штук, по 3 на каждую фазу), да и ещё останется целая куча других деталей. Раздобыть такие платы можно в ближайшем компьютерном сервисе за пару бутылок валерьянки, но автор предпочитает давать объявления о скупке нерабочего компьютерного барахла и их ему доставляют прямо домой по 1,5 - 2 у.е..
Что показывает технико-экономическое сравнение данного варианта? За пару у.е. купив плату и докупив две TL494, два кусочка текстолита 6х10см, два корпуса, две пары разъёмов и около 5м подходящего провода можно собрать за один день два преобразователя которые в ближайшем магазине продаются минимум за 30-35 у.е. каждый. И это притом, что общие затраты на два преобразователя, как правило, не превышают 6-8 у.е. Заработать или прилично сэкономить на этом можно и это для автора уже давно не вопрос. Но сделаете ли это Вы? Это остаётся вопросом.
На фото готовое устройство в корпусе от принтера HP с цепями сигнализации и масштабирующей



Раздел: [Преобразователи напряжения (инверторы)]
Сохрани статью в:
Оставь свой комментарий или вопрос:

Данный повышающий dc-dc преобразователь предназначен для повышения напряжения бортовой сети автомобиля (+12В) до 19В, получая возможность подключения ноутбука к бортовой кабельной сети автомобиля. С учетом того, что ноутбук в наше время не редкость, то представленная в этой статье схема преобразователя очень даже актуальна для автомобилистов.

Данный автомобильный преобразователь на UC3845 построен по принципу однотактного повышающего преобразователя с накопительным дросселем. Схема имеет защиту по току.

Схема автомобильного преобразователя из 12В в 19В на UC3845

Работа схемы подробно описана в статье “ ”. В этой же статье вы прочтете о том, как работает защита по току, а также другую интересную информацию по данной схеме.

Микросхема UC3845 является ШИМ контроллером и по своей работе аналогична ШИМ UC3843.

Микросхемы UC3845 и UC3843 одинаковы по расположению выводов и могут быть заменены друг с другом в данной схеме. При замене этих ШИМ контроллеров стоит учесть тот факт, что при одинаковых времязадающих элементах (R2, C6) частота на выходах этих ШИМ (6 вывод) будет отличаться почти вдвое.

Дело в том, что в UC3845 есть триггер, который делит частоту пополам, а также ограничивает ширину импульса до 50% (речь пойдет ниже). И если настроить на одинаковую частоту генераторы микросхем UC3845 и UC3843 (встаем осциллографом на 4 вывод), то на самом выходе UC3845 (вывод 6) частота будет вдвое меньше выходной частоты UC3843. Не путайте выходную частоту, с частотой генератора ШИМ, она не всегда одинаковая (как в нашем случае).

К примеру, я установил в качестве R2 = 10кОм, а C6 = 1нФ, частота генератора UC3845 составила примерно 160кГц, а у UC3843 135кГц. На выходе UC3845 частота составила примерно 80кГц (то есть уменьшилась вдвое), а у UC3843 частота равнялась частоте генератора (135кГц).

Поэтому для UC3845 конденсатор C6 необходимо устанавливать емкостью не более 500пФ, а резистор R2 на 10кОм, чтобы на выходе получить частоту примерно 160кГц. Я установил 1нФ и все испытания проводил на этой емкости.

Еще одно отличие этих микросхем в том, что коэффициент заполнения импульса у ШИМ UC3845 равен 50%, в отличие от UC3843, коэффициент которой равен 100%.

Короче, при регулировке скважности у UC3843 ширина импульса может быть настолько большой, что займет почти весь период, а у UC3845 только половину периода. Как это можно пощупать, да легко! Собрав, этот автомобильный повышающий преобразователь из 12В в 19В на UC3845, при регулировке напряжения под нагрузкой 3А, напряжение на выходе преобразователя не сможет подняться больше 21В-22В (напряжение зависит от параметров дросселя), то есть напряжение будет “просаживаться”.

Казалось бы беда! Но нет, наш преобразователь должен выдавать напряжение 19В постоянного тока, и он со своей задачей справляется отлично при нагрузке 3А и 5А. Не зря эта микросхема является одной из лидеров в схемах преобразования 12-19 Вольт.

Некоторые параметры микросхемы

Максимальное входное напряжение не более.......... 30В

Выходной ток.......... 1А

Ток сигнала ошибки......... 10мА

Мощность рассеивания (корпус DIP).......... 1Вт

Максимальная частота генератора.......... 500кГц

Коэффициент заполнения.......... 50%

Рабочий ток.......... 11мА

Другие параметры и графики найдете в .

Элементы схемы

Резисторы схемы нужно выбирать на четверть Ватта (0,25Вт), за исключением R4 = 0,5Вт и R6 = 2Вт.

Конденсаторы C1, C2, C8, C9 должны быть рассчитаны на напряжение 25В. На выходе схемы достаточно одного электролита на 1000мкФ (C8 или C9).

Диоды VD1 и VD2 – Шоттки, или другие супербыстрые диоды. У меня установлена сборка Шоттки SB2040CT (20А, 40В), меньше 40В лучше не устанавливать. Можно на плату установить одиночный диод, но к сборке легче прикрепить радиатор.

R9 - многооборотный подстроечный резистор типа 3296. Многооборотные резисторы позволяют производить настройку плавно.

Самое интересное это дроссель L1. Индуктивность его должна быть в пределах 40-50мкГн. Хотя и при индуктивности 20мкГн преобразователь будет работать, только КПД будет ниже желаемого. Для его изготовления необходимо найти кольцо из порошкового железа желто-белого цвета. Чем больше диаметр кольца, тем лучше. У меня наружный диаметр кольца составляет 27мм, внутренний 14мм и толщина 11мм. Мотаем 20-22 витка двойным медным, лакированным проводом. Диаметр жилы 1мм. У меня диаметр жилы 1,4мм, я мотал одиночным проводом. Такой дроссель долговременно держит ток 3А при выходном напряжении +19В.

При намотке двойным (тройным) проводом обмотка может не уместится в один слой, тогда обмотку необходимо выполнять в два слоя, можно без изоляции (если эмаль провода не повреждена).

Пару слов о защите

От короткого замыкания (КЗ) будет спасать предохранитель FU1. Схема КЗ выдерживает, это показали мои опыты, главное чтобы источник напряжения +12В, подключенный к входу преобразователя, имел защиту и был достаточно мощным, а лучше чтобы это был автомобильный аккумулятор.

Работа защиты по току подробно описана в статье про UC3843 (смотри ссылку выше), здесь все работает аналогичным образом. Единственное добавлю, для работы преобразователя на UC3845 на выходной ток до 5А, необходимо сопротивление резистора R6 (датчик тока) уменьшить вдвое, или подключить в параллель два резистора по 0,1 Ома. Если не сделать данные манипуляции, Выходная мощность (напряжение и ток) будут ограничены защитой.

Два разных по габаритам дросселя…

Преобразователь с параметрами дросселя, описанными чуть выше, я эксплуатировал на нагрузку сопротивлением 6,2 Ома. Ток нагрузки составил 3А, при выходном напряжении 19В. В течение тридцатиминутной работы дроссель нагрелся до 45 градусов Цельсия, и рост температуры прекратился, это очень даже неплохо. Кстати КПД при такой нагрузке составил 82%.

После чего я установил второй дроссель, который намотан на кольце с наружным диаметром 18мм, внутренним 8мм и шириной 7мм. Провод одиночный, диаметр провода 1,4мм, 20 витков (40мкГн). При работе на выходной ток 3А в течение 30 мин, дроссель нагрелся до температуры 50 градусов Цельсия.

Теперь вам немного понятно, какие габариты сердечника выбрать. Конечно, если бы я мотал двумя жилами, нагрев бы снизился немного, но даже 55 градусов это вполне нормально.

Печатная плата с компонентами и инструкцией в упаковке.
Данный набор позволит вам собрать импульсный преобразователь с выходным напряжением 19 В и максимальным выходным током 5 А для питания портативных компьютеров: ноутбуков, нетбуков в автомобиле. В длительных поездках и длинных городских пробках ваша техника не отключится внезапно из-за разряда аккумулятора.

Устройство представляет собой мощный DC-DC преобразователь для питания портативных компьютеров от бортовой сети автомобиля, автомобильного аккумулятора или любого другого источника напряжения 12...14 В соответствующей мощности.
Преобразователь построен на микросхеме ШИМ-контроллера SG3845, которая преобразовывает постоянное входное напряжение в переменное напряжение высокой частоты. Частота преобразования - 90 кГц. Для управления выходным дросселем используется мощный полевой транзистор VT1. Стабилизация выходного напряжения так же осуществляется микросхемой, для чего на вывод 2 подается сигнал ошибки с делителя R9, R10.
Выходное переменное напряжение выпрямляется диодной сборкой VD2 и сглаживается конденсаторами С7...С9.
Входной дроссель L1 необходим для предотвращения проникновения высокочастотных помех в бортовую сеть автомобиля.

Характеристики:
Диапазон напряжений питания: DC 12...14 В;
Номинальное выходное напряжение: DC 19 В (±5 %);
Максимальный ток нагрузки: 5 А;
Максимальный потребляемый ток: 10 А;
Частота преобразования: 90 кГц.
Сложность сборки: 2 балла;
Время сборки: Около 3 часов;
• Диапазон рабочих температур: -10...+50 градусов Цельсия;
• Относительная влажность: 5...95 % (без образования конденсата);
• Упаковка: Блистер;
• Размеры упаковки: 200 x 122 x 38 мм;
• Размеры устройства: 91 x 61 x 48 мм;
• Общая масса набора: ~96 г.

Комплект поставки:
Плата печатная;
Набор радиодеталей;
• Моточек трубчатого припоя ПОС-61 (0,5 м);
• Моточек провода ПТВ-2, 0,8 мм (2 м);
• Набор метизов (М3);
• Инструкция по эксплуатации.

Примечание:
Внимание! Настоятельно НЕ рекомендуется подключать преобразователь в розетку прикуривателя автомобиля! Устройство подключается напрямую к клеммам аккумулятора через предохранитель 30 А, включённый в разрыв плюсового провода сечением не менее 6 мм 2 .
Нагрузку (портативный компьютер) подключать к преобразователю проводом с сечением не менее 1,5 мм 2 .
Производитель данного конструктора НЕ несёт ответственности за любые последствия для вашего автомобиля или потативной электроники, возникшие в результате эксплуатации данного устройства.

Для увеличения нажмите на картинку
(навигация по картинкам осуществляется стрелочками на клавиатуре)

Ниже представлена схема повышающего DC/DC конвертера, построенного по топологии boost, который, при подаче на вход напряжения 5…13В, на выходе выдает стабильное напряжение 19В. Таким образом, с помощью данного преобразователя можно получить 19В из любого стандартного напряжения: 5В, 9В, 12В. Преобразователь рассчитан на максимальный выходной ток порядка 0,5 А, имеет небольшие размеры и очень удобен.

Для управления преобразователем используется широко распространённая микросхема MC34063.

В качестве силового ключа используется мощный n-канальный MOSFET, как наиболее экономичное с точки зрения КПД решение. У этих транзисторов минимальное сопротивление в открытом состоянии и как следствие — минимальный нагрев (минимальная рассеиваемая мощность).

Поскольку микросхемы серии 34063 не приспособлены для управления полевыми транзисторами, то лучше применять их совместно со специальными драйверами (например, с драйвером верхнего плеча полумоста IR2117, ) — это позволит получить более крутые фронты при открытии и закрытии силового ключа. Однако, при отсутствии микросхем драйверов, можно вместо них использовать "альтернативу для бедных": биполярный pnp-транзистор с диодом и резистором (в данном случае можно, поскольку исток полевика подключен к общему проводу). При включении MOSFET затвор заряжается через диод, биполярный транзистор при этом закрыт, а при отключении MOSFET биполярный транзистор открывается и затвор разряжается через него.

Схема :

L1, L2 — катушки индуктивности 35 мкГн и 1 мкГн, соответственно. Катушку L1 можно намотать толстым проводом на кольце с материнской платы, только найдите кольцо диаметром побольше, потому что родные индуктивности там всего по несколько микрогенри и мотать возможно придётся в пару слоёв. Катушку L2 (для фильтра) берём готовую с материнки.

С1 — входной фильтр, электролит 330 мкФ/25В

С2 — времязадающий конденсатор, керамика 100 пФ

С3 — выходной фильтр, электролит 220 мкФ/25В

С4, R4 — снаббер, номиналы 2,7 нФ, 10 Ом, соответственно. Во многих случаях без него вообще можно обойтись. Номиналы элементов снаббера сильно зависят от конкретной разводки. , уже после изготовления платы.

С5 — фильтр по питанию микрухи, керамика на 0,1 мкФ

D1 — мощный диод Шоттки S10S40C (с материнки).

D2 — диод Шоттки (подойдёт практически любой)

R1, R2 — делитель напряжения. Для выхода 19В резисторы имеют номиналы 14 кОм и 1 кОм, соответственно.

R3 — резистор 4,7 кОм

T1 — силовой транзистор MOSFET, 6035AL (с материнки)

T2 — pnp транзистор. Подойдут, например, наш КТ361, буржуйский 2PA733 или подобные.

Готовый девайс :

Более подробную теорию работы повышающих преобразователей и методику их расчёта можно (предложенная в этой статье методика несколько отличается от типовой).