Что представляет собой электронно дырочный переход. Т




p-n (пэ-эн) переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому, такой переход ещё называют электронно — дырочным переходом.

Всего есть два типа полупроводников это p и n типа. В n — типе основными носителями заряда являются электроны , а в p — типе основными — положительно заряженные дырки. Положительная дырка возникает после отрыва электрона от атома и на месте него образуется положительная дырка.

Что бы разобраться как работает p-n переход надо изучить его составляющие то есть полупроводник p — типа и n — типа.

Полупроводники p и n типа изго­тавливаются на основе монокристаллического кремния, имеющего очень высокую степень чистоты, поэтому малейшие примеси (менее 0,001%) су­щественным образом изменяют его электрофизические свойства.

В полупроводнике n типа основными носителями заряда являются электроны . Для получения их используютдонорные примеси, которые вводятся в кремний, — фосфор, сурьма, мышьяк.

В полупроводнике p типа основными носителями заряда являются положительно заряженные дырки . Для получения их используют акцепторные примеси алюминий, бор.

Полупроводник n — типа (электронной проводимости)

Примесный атом фосфора обычно замещает основной атом в узлах кри­сталлической решетки. При этом четыре валентных электрона атома фосфора вступают в связь с четырьмя валентными электронами соседних четырех атомов кремния, образуя устойчивую оболочку из восьми электронов. Пятый валентный электрон атома фосфора оказывается слабо связанным со своим атомом и под действием внешних сил (тепловые колебания решетки, внешнее электрическое поле) легко становится свободным, создавая повышенную концентрацию свободных электронов . Кристалл приобретает электронную проводимость или проводимость n-типа . При этом атом фосфора, лишенный электрона, жестко связан с кристаллической решеткой кремния положи­тельным зарядом, а электрон является подвижным отрицательным зарядом. При отсутствии действия внешних сил они компенсируют друг друга, т. е. в кремнии n-типа количество свободных электронов проводимости опреде­ляется количеством введенных донорных атомов примеси.

Полупроводник p — типа (дырочной проводимости)

Атом алюминия, имеющий только три валентных электрона, не может самостоятельно создать устойчивую восьмиэлектронную оболочку с соседними атомами кремния, так как для этого ему необходим еще один электрон, который он отбирает у одного из атомов кремния, находящегося поблизости. Атом кремния, лишенный электрона, имеет положительный заряд и, так как он может захватить электрон соседнего атома кремния, его можно считать подвижным положительным зарядом, не связанным с кристаллической решеткой, называемым дыркой. Атом алюминия, захвативший электрон, становится отрицательно заряженным центром, жестко связанным с кристал­лической решеткой. Электропроводность такого полупроводника обусловлена движением дырок , поэтому он называется дырочным полупроводни­ком р-типа . Концентрация дырок соответствует количеству введенных атомов акцепторной примеси.

pn переход это тонкая область, которая образуется в том месте, где контактируют два полупроводника разного типа проводимости. Каждый из этих полупроводников электрически нейтрален. Основным условием является то что в одном полупроводнике основные носители заряда это электроны а в другом дырки.

При контакте таких полупроводников в результате диффузии зарядов дырка из p области попадает в n область. Она тут же рекомбенирует с одним из электронов в этой области. В результате этого в n области появляется избыточный положительный заряд. А в p области избыточный отрицательный заряд.

Таким же образом один из электронов из n области попадает в p область, где рекомбенирует с ближайшей дыркой. Следствием этого также является образование избыточных зарядов. Положительного в n области и отрицательного в p области.

В результате диффузии граничная область наполняется зарядами, которые создают электрическое поле. Оно будет направлено таким образом, что будет отталкивать дырки находящиеся в области p от границы раздела. И электроны из области n также будут отталкиваться от этой границы.

Если говорить другими словами на границе раздела двух полупроводников образуется энергетический барьер. Чтобы его преодолеть электрон из области n должен обладать энергией больше чем энергия барьера. Как и дырка из p области.

Наряду с движением основных носителей зарядов в таком переходе существует и движение неосновных носителей зарядов. Это дырки из области n и электроны из области p. Они также двигаются в противоположную область через переход. Хотя этому способствует образовавшееся поле, но ток получается, ничтожно мал. Так как количество неосновных носителей зарядов очень мало.

Если к pn переходу подключить внешнюю разность потенциалов в прямом направлении, то есть к области p подвести высокий потенциал, а к области n низкий. То внешнее поле приведет к уменьшению внутреннего. Таким образом, уменьшится энергия барьера, и основные носители заряда смогут легко перемещаться по полупроводникам. Иначе говоря, и дырки из области p и электроны из области n будут двигаться к границе раздела. Усилится процесс рекомбинации и увеличится ток основных носителей заряда.

Рисунок 1 — pn переход, смещённый в прямом направлении

Если разность потенциалов приложить в обратном направлении, то есть к области p низкий потенциал, а к области n высокий. То внешнее электрическое поле сложится с внутренним. Соответственно увеличится энергия барьера не дающего перемещаться основным носителям зарядов через переход. Другими словами электроны из области n и дырки из области p будут двигаться от перехода к внешним сторонам полупроводников. И в зоне pn перехода попросту не останется основных носителей заряда обеспечивающих ток.

Рисунок 2 — pn переход, смещённый в обратном направлении

Если обратная разность потенциалов будет чрезмерно высока, то напряжённость поля в области перехода увеличится до тех пор, пока не наступит электрический пробой. То есть электрон ускоренный полем не разрушит ковалентную связь и не выбьет другой электрон и так далее.

(ИМС). В полупроводниковых приборах используется свойство односторонней проводимости p-n -переходов. Электронно-дырочным называют такой p-n- переход, который образован двумя областями полупроводника с разными типами проводимости: электронной (n ) и дырочной (p ). Получают p-n- переход с помощью диффузии или эпитаксии .

В физике твёрдого тела, ды?рка — это отсутствие электрона в электронной оболочке. Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями. Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом или облучения ионизирующим излучением.

p-n-перехо?д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.

Полупроводниковые элементы включают группу элементов с собственной электропроводностью 10 2 -10 -8 См/м. Электри?ческая проводи?мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс.

Согласно зонной теории к полупроводникам относят элементы, у которых ширина запрещенной энергетической зоны <3эВ. Так у германия она равна 0,72 эВ, у кремния 1,11 эВ, у арсенида галия - 1,41 эВ.

Рисунок 9 - Полупроводник без примеси У проводников запрещенная зона отсутствует.

Электронно-дырочная проводимость возникает в результате разрыва валентных связей, являясь собственной проводимостью, которая обычно невелика. Под воздействием электрического поля, температуры и других внешних факторов электрические свойства полупроводников изменяются в значительно большей степени, чем свойства проводников и диэлектриков.

Для увеличения электропроводности в полупроводники вводят незначительное количество примесей , при этом оказывается, что в зависимости от рода примеси получают как полупроводники с дырочной проводимостью (при добавках трёхвалентной примеси — акцепторов типа индий (In)), называемых полупроводниками p -типа, так и полупроводники с электронной проводимостью (при добавках пятивалентной примеси — доноров типа мышьяк (As)), называемых полупроводниками n -типа.


При сплавлении полупроводников различных типов создаётся область объёмного заряда по обе стороны от границы раздела, называемая электронно-дырочным или p-n -переходом.

В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд.

Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.

Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие и перетекание зарядов прекращается.

При этом возникает так называемый запирающий (барьерный ) слой в несколько микрометров, лишенный носителей заряда, с напряженностью E з электрического поля, которая препятствует диффузии носителей заряда (рис. 10, а ).

Рисунок 10 - Запирающий слой: а) при отсутствии напряжения; б) при подаче обратного напряжения; в) при подаче прямого напряжения

Если к p-n -переходу приложить обратное напряжение (рис. 10, б ), то создаваемая им напряженность E з электрического поля повышает потенциальный барьер и препятствует переходу электронов из n -области в p -область и дырок из p -области в n -область. При этом поток неосновных носителей (дырок из n -области и электронов из p -области), их экстракция , образует обратный ток I обр .

Если включить внешний источник энергии Е , как это показано на рис. 10, в , то создаваемая им напряженность электрического поля будет противополож-ной направлению напряженности E з объёмного заряда, и в область раздела полупроводников будет инжектироваться все большее количество дырок (являющимися неосновными для n -области носителями заряда), которые и образуют прямой ток I пр . При напряжении 0,3-0,5 В запирающий слой исчезнет, и ток I пр определяется только сопротивлением полупроводника.

Встречной инжекцией электронов в p -область можно пренебречь, так как число дырок в рассматриваемом примере, а следовательно, и основных носителей заряда больше в p -области, чем свободных электронов в n -области, т. е.

N a >>N д,

где N a и N д — концентрации акцепторов и доноров в p - и n -областях.

Область кристалла, имеющая более высокую концентрацию примесей, называют эмиттером , а вторую, с меньшей концентрацией, — базой .

Граница между двумя соседними областями полупроводника, одна из которых обладает проводимостью n-типа, а другая p-типа, называется электронно-дырочным переходом (p-n-переходом). Он является основой большинства полупроводниковых приборов. Наиболее широко применяются плоскостные и точечные p-n-переходы.

Плоскостной p-n-переход представляет собой слоисто-контактный элемент в объеме кристалла на границе двух полупроводников с проводимостями p- и n-типов
(рис. 1.2, а). В производстве полупроводниковых приборов и интегральных микросхем применяются переходы типа р+- n- или р- п+ переходы. Индекс «+» подчеркивает большую электропроводность данной области монокристалла.

Рис. 1.2 Плоскостный (а) и точечный (б) p-n переходы

Рассмотрим физические процессы в плоскостном p-n-переходе (рис. 1.3). Поскольку концентрация электронов в полупроводнике n-типа значительно больше, чем в полупроводнике p-типа и, напротив, в полупроводнике p-типа высокая концентрация дырок, то на границе раздела полупроводников создается перепад (градиент) концентрации дырок dp/dx и электронов dn/dx. Это вызывает диффузионное перемещение электронов из n-области в p-область и дырок в противоположном направлении. Плотности дырочной и электронной составляющих диффузионного тока, обусловленных перемещением основных носителей, определяются выражениями:

где Dn и Dp – коэффициенты диффузии соответственно электронов и дырок.

Общая плотность тока через p-n-переход определяется суммой диффузионных и дрейфовых составляющих плотностей токов, которые при отсутствии внешнего напряжения равны. Так как диффузионный и дрейфовый потоки зарядов через p-n-переход перемещаются во встречном направлении, то они компенсируют друг друга. Поэтому в равновесном состоянии общая плотность тока через p-n-переход равна

Наличие двойного электрического слоя обусловливает возникновение в p-n-переходе контактной разности потенциалов, претерпевающей наибольшее изменение на границе полупроводников n-p-типов и называемой потенциальным барьером jк. Величина потенциального барьера определяется уравнением

где jТ = kT/q – тепловой потенциал (при нормальной температуре, т. е. при T =300 К jТ » » 0,026 В); рп и np – концентрация дырок и электронов в полупроводниках n- и р-типов. У германиевых переходов jТ = (0,3 – 0,4) В, у кремниевых jТ = (0,7 – 0,8) В.

Если подключить к p-n-переходу источник внешнего напряжения таким образом, чтобы плюс был приложен к области полупроводника n-типа, а минус – к области полупроводника p-типа (такое включение называют обратным, рис. 1.4), то обедненный слой расширяется, так как под воздействием внешнего напряжения электроны и дырки смещаются от p-n-перехода в разные стороны. При этом высота потенциального барьера также возрастает и становится равной jк+ u (рис. 1.5), поскольку напряжение внешнего смещения включено согласно контактной разности потенциалов.

Рис 1.4 Обратное смещение перехода

Рис 1.5 Изменение потенциального барьера

Так как напряжение внешнего источника прикладывается встречно контактной разности потенциалов, то потенциальный барьер снижается на величину u (см.
рис. 1.7), и создаются условия для инжекции основных носителей – дырок из полупроводника p -типа в полупроводник n -типа, а электронов – в противоположном направлении. При этом через p n -переход протекает большой прямой ток, обусловленный основными носителями заряда. Дальнейшее снижение потенциального барьера ведет к росту прямого тока при неизменном значении обратного дрейфового тока.

В процессе технологической обработки кристалла примесь вводится таким образом, что ее концентрация, а следовательно, концентрация основных носителей в одной из областей кристалла (обычно в полупроводнике p-типа) на два-три порядка превышает концентрацию примеси в другой области. Область с высокой концентрацией примеси (низкоомная область) является основным источником носителей подвижных зарядов через p n -переход и называется эмиттером. Область с низкой концентрацией примеси является высокоомной и называется базой. Поэтому доминирующей составляющей прямого тока, протекающего через p n -переход и состоящего из электронной и дырочной составляющих, будет та, которая определяется основными носителями зарядов области с более высокой их концентрацией

I пр = I p + I n = I 0 (e U пр / j Т 1). (1.11)

При |U пр | >> j Т переход по существу исчезает и ток ограничивается лишь сопротивлением (единицы и даже десятки ом) базовой области r б .

Вольтамперная характеристика (ВАХ) p n -перехода, построенная на основании выражений (1.10) и (1.11), имеет вид, показанный на рис. 1.8. Область ВАХ, лежащая в первом квадранте, соответствует прямому включению p n -перехода, а лежащая в третьем квадранте – обратному. Как отмечалось выше, при достаточно большом обратном напряжении возникает пробой перехода. Пробоем называют резкое изменение режима работы перехода, находящегося под обратным напряжением.

Характерной особенностью этого изменения является резкое уменьшение дифференциального сопротивления перехода r диф = du / di (u и i – напряжение на переходе и ток перехода соответственно). После начала пробоя незначительное увеличение обратного напряжения сопровождается резким увеличением обратного тока. В процессе пробоя ток может увеличиваться при неизменном и даже уменьшающемся (по модулю) обратном напряжении (в последнем случае дифференциальное сопротивление оказывается отрицательным). На ВАХ перехода (рис. 1.9) пробою соответствует область резкого изгиба характеристики вниз в третьем квадранте.

Рис. 1.8 Вольтамперная характеристика (а) и схема включения стабилитрона (б)

Различают три вида пробоя p-n -перехода: туннельный, лавинный и тепловой. И туннельный, и лавинный пробой принято называть электрическим пробоем.

Туннельный пробой происходит, когда геометрическое расстояние между валентной зоной и зоной проводимости (ширина барьера) достаточно мало, то возникает туннельный эффект – явление прохождения электронов сквозь потенциальный барьер. Туннельный пробой имеет место в р n -переходах с базой, обладающей низким значением удельного сопротивления.

Рис. 1.9 ВАХ p — n -перехода

Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Лавинный пробой возникает, если при движении до очередного соударения с атомом дырка (или электрон) приобретает энергию, достаточную для ионизации атома. В результате число носителей резко возрастает, и ток через переход растёт. Расстояние, которое проходит носитель заряда до соударения, называют длиной свободного пробега. Лавинный пробой имеет место в переходах с высокоомной базой (имеющей большое удельное сопротивление). Характерно, что при этом пробое напряжение на переходе мало зависит от тока через него (крутопадающий участок в третьем квадранте ВАХ, см. рис. 1.9).

При тепловом пробое увеличение тока объясняется разогревом полупроводника в области р-n-перехода и соответствующим увеличением удельной проводимости. Тепловой пробой характеризуется отрицательным дифференциальным сопротивлением. Если полупроводник – кремний, то при увеличении обратного напряжения тепловой пробой обычно возникает после электрического (во время электрического пробоя полупроводник разогревается, а затем начинается тепловой пробой). После электрического пробоя p-n-переход не изменяет своих свойств. После теплового пробоя, если полупроводник успел нагреться достаточно сильно, свойства перехода необратимо изменяются (полупроводниковый прибор выходит из строя).

Как уже отмечалось, вследствие диффузии электронов и дырок через p-n-переход в области перехода возникают нескомпенсированные объемные (пространственные) заряды ионизированных атомов примесей, которые закреплены в узлах кристаллической решетки полупроводника и поэтому не участвуют в процессе протекания электрического тока. Однако объемные заряды создают электрическое поле, которое, в свою очередь, самым существенным образом влияет на движение свободных носителей электричества, т. е. на процесс протекания тока.

Изменение внешнего напряжения, приложенного к p-n-переходу, изменяет величину объемного пространственного заряда обедненного слоя. Следовательно, p-n-переход ведет себя как плоский конденсатор, емкость которого, определяемая отношением изменения пространственного заряда ¶Q к изменению напряжения ¶U при обратном включении перехода, называется барьерной и может быть найдена из уравнения

где e0 – диэлектрическая проницаемость вакуума; e – относительная диэлектрическая

проницаемость; S – площадь p- n -перехода; d – толщина обедненного слоя (толщина p n -перехода).

Изменение заряда в p- n -переходе может быть вызвано также изменением концентрации инжектированных неравновесных носителей в базе при прямом смещении p n -перехода. Отношение величины изменения инжектированного заряда к величине изменения прямого напряжения определяет диффузионную емкость p n -перехода:
С диф = д
Q инж /д U . Диффузионная емкость превышает барьерную при прямом смещении p n -перехода, однако имеет незначительную величину при обратном смещении.

Если блок полупроводника P-типа соединить с блоком полупроводника N-типа (рисунок ниже (a)), результат не будет иметь никакого значения. У нас будут два проводящих блока соприкасающихся друг с другом, не проявляя никаких уникальных свойств. Проблема заключается в двух отдельных и различных кристаллических структурах. Количество электронов уравновешивается количеством протонов в обоих блоках. Таким образом, в результате ни один блок не имеет какого-либо заряда.

Тем не менее, один полупроводниковый кристалл, изготовленный из материала P-типа с одной стороны и материала N-типа с другой стороны (рисунок ниже (b)), обладает уникальными свойствами. У материала P-типа основными являются положительные носители заряда, дырки, которые свободно передвигаются по кристаллической решетке. У материала N-типа основными и подвижными являются отрицательные носители заряда, электроны. Вблизи перехода электроны материала N-типа диффундируют через переход, соединяясь с дырками в материале P-типа. Область материала P-типа вблизи перехода приобретает отрицательный заряд из-за привлеченных электронов. Так как электроны покинули область N-типа, та приобретает локальный положительный заряд. Тонкий слой кристаллической решетки между этими зарядами теперь обеднен основными носителями, таким образом, он известен, как обедненная область . Эта область становится непроводящим материалом из собственного полупроводника. По сути, мы имеем почти изолятор, разделяющий проводящие легированные области P и N типов.

(a) Блоки полупроводников P и N типов при контакте не обладают пригодными для использования свойствами.
(b) Монокристалл, легированный примесями P и N типа, создает потенциальный барьер.

Такое разделение зарядов в P-N-переходе представляет собой потенциальный барьер. Этот потенциальный барьер может быть преодолен под воздействием внешнего источника напряжения, заставляющего переход проводить электрический ток. Формирование перехода и потенциального барьера происходит во время производственного процесса. Величина потенциального барьера зависит от материалов, используемых при производстве. Кремниевые P-N-переходы обладают более высоким потенциальным барьером, по сравнению с германиевыми переходами.

На рисунке ниже (a) батарея подключена так, что отрицательный вывод источника поставляет электроны к материалу N-типа. Эти электроны диффундируют к переходу. Положительный вывод источника удаляет электроны из полупроводника P-типа, создавая дырки, которые диффундируют к переходу. Если напряжение батареи достаточно велико для преодоления потенциала перехода (0,6В для кремния), электроны из области N-типа и дырки из области P-типа объединяются, уничтожая друг друга. Это освобождает пространство внутри решетки для перемещения в сторону перехода большего числа носителей заряда. Таким образом, токи основных зарядов областей N-типа и P-типа протекают в сторону перехода. Рекомбинация в переходе позволяет току батареи протекать через P-N переход диода. Такое включение называется прямым смещением .


(a) Прямое смещение отталкивает носителей зарядов к переходу, где рекомбинация отражается на токе батареи.
(b) Обратное смещение притягивает носителей зарядов к выводам батареи, подальше от перехода. Толщина обедненной области увеличивается. Устойчивый ток через батарею не протекает.

Если полярность батареи изменена на противоположную, как показано выше на рисунке (b), основные носители зарядов притягиваются от перехода к клеммам батареи. Положительный вывод батареи оттягивает от перехода основных носителей заряда в области N-типа, электронов. Отрицательный вывод оттягивает от перехода основных носителей в области P-типа, дырок. Это увеличивает толщину непроводящей обедненной области. В ней отсутствует рекомбинация основных носителей; и таким образом, отсутствует и проводимость. Такое подключение батареи называется обратным смещением .

Условное обозначение диода, показанное ниже на рисунке (b), соответствует пластине легированного полупроводника на рисунке (a). Диод представляет собой однонаправленное устройство. Электронный ток протекает только в одном направлении, против стрелки, соответствующем прямому смещению. Катод, полоса на условном обозначении диода, соответствует полупроводнику N-типа. Анод, стрелка, соответствует полупроводнику P-типа.

Примечание: в оригинале статьи предлагается алгоритм запоминания расположения типов полупроводника в диоде. Неуказывающая (N ot-pointing) часть условного обозначения (полоса) соответствует полупроводнику N -типа. Указывающая (P ointing) часть условного обозначения (стрелка) соответствует P -типу.


(a) Прямое смещение PN-перехода
(b) Соответствующее условное графическое обозначение диода
(c) График зависимости тока от напряжения кремниевого диода

Если к диоду приложено прямое смещение (как показано на рисунке (a) выше), при увеличении напряжения от 0 В ток будет медленно возрастать. В случае с кремниевым диодом протекающий ток можно будет измерить, когда напряжение приблизится к 0,6 В (рисунок (c) выше). При увеличении напряжения выше 0,6 В ток после изгиба на графике начнет резко возрастать. Увеличение напряжения выше 0,7 В может привести к току, достаточно большому, чтобы вывести диод из строя. Прямое напряжение U пр является одной из характеристик полупроводников: 0,6-0,7 В для кремния, 0,2 В для германия, несколько вольт для светоизлучающих диодов. Прямой ток может находиться в диапазоне от нескольких мА для точечных диодов до 100 мА для слаботочных диодов и до десятков и тысяч ампер для силовых диодов.

Если диод смещен в обратном направлении, то протекает только ток утечки собственного полупроводника. Это изображено на графике слева от начала координат (рисунок (c) выше). Для кремниевых диодов этот ток в самых экстремальных условиях будет составлять примерно 1 мкА. Это ток при росте напряжения обратного смещения увеличивается незаметно, пока диод не будет пробит. При пробое ток увеличивается настолько сильно, что диод выходит из строя, если последовательно не включено сопротивление, ограничивающее этот ток. Обычно мы выбираем диод с обратным напряжением, превышающим напряжения, которые могут быть приложены при работе схемы, чтобы предотвратить пробой диода. Как правило, кремниевые диоды доступны с напряжениями пробоя 50, 100, 200, 400, 800 вольт и выше. Также возможно производство диодов с меньшим напряжением пробоя (несколько вольт) для использования в качестве эталонов напряжения.

Ранее мы упоминали, что обратный ток утечки до микроампера в кремниевых диодах обусловлен проводимостью собственного полупроводника. Эта утечка может быть объяснена теорией. Тепловая энергия создает несколько пар электрон-дырка, которые проводят ток утечки до рекомбинации. В реальной практике этот предсказуемый ток является лишь частью тока утечки. Большая часть тока утечки обусловлена поверхностной проводимостью, связанной с отсутствием чистоты поверхности полупроводника. Обе составляющие тока утечки увеличиваются с ростом температуры, приближаясь к микроамперу для небольших кремниевых диодов.

Для германия ток утечки на несколько порядков выше. Так как германиевые полупроводники сегодня редко используются на практике, то это не является большой проблемой.

Подведем итоги

P-N переходы изготавливаются из монокристаллического куска полупроводника с областями P и N типа в непосредственной близости от перехода.

Перенос электронов через переход со стороны N-типа к дыркам на сторону P-типа с последующим взаимным уничтожением создает падение напряжения на переходе, составляющее от 0,6 до 0,7 вольта для кремния и зависящее от полупроводника.

Прямое смещение P-N перехода при превышении значения прямого напряжения приводит к протеканию тока через переход. Прикладываемая внешняя разность потенциалов заставляет основных носителей заряда двигаться в сторону перехода, где происходит рекомбинация, позволяющая протекать электрическому току.

Обратное смещение P-N перехода почти не создает ток. Прикладываемое обратное смещение оттягивает основных носителей заряда от перехода. Это увеличивает толщину непроводящей обедненной области.

Через P-N переход, к которому приложено обратное смещение, протекает обратный ток утечки, зависящий от температуры. В небольших кремниевых диодах он не превышает микроампер.