Дисперсия случайной величины обладает свойствами. Дисперсия дискретной случайной величины




Дисперсия D X случайной величиныXопределяется формулой

D X = E (X – EX)2

Дисперсия случайной величины - это математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

Рассмотрим случайную величину Xс законом распределения

Вычислим её математическое ожидание.

E X = 1 + 2 + 3 =

Составим закон распределения случайной величины X – EX

а затем закон распределения случайной величины (X-EX) 2

D X = ++=

Замечание. Более удобной для вычисления может оказаться следующая формула, которую можно рассматривать как одно из свойств дисперсии:

DX = EX2 – (EX)2

Таким образом, дисперсия случайной величины равна разности мате­матического ожидания квадрата случайной величины и квадрата её математи­ческого ожидания. Для использования этой формулы нужно составить таблицу:

Выше было показано, что EX =р . Легко видеть, чтоEX 2 =р . Таким образом, получается, чтоD X=р р 2 =pq .

Дисперсия характеризует степень рассеяния значений случайной величины относительно её математического ожидания. Если все значения случайной величины тесно сконцентрированы около её математического ожидания и большие отклонения от математического ожидания маловероятны, то такая случайная величина имеет малую дисперсию. Если значения случайной величины рассеяны и велика вероятность больших отклонений от математического ожидания, то такая случайная величина имеет большую дисперсию.

Пример

Найти дисперсию случайной величины Х, равномерно распределенной на

Свойства дисперсии.

    Если k – число, то D (kX ) =k 2 D X.

    Для попарно независимых случайных величин X 1 ,X 2 ,,X n справедливо равенство

    Если Х и Y независимы, D (X+Y) =D X+D Y.

Предлагаем в качестве упражнения рассмотреть, чему равняется D(X– Y) в тех же условиях

Неравенства Маркова и Чебышева

Неравенства Маркова дают оценку для значений случайной величины в тех случаях, когда наши знания о случайной величине ограничиваются ее математическим ожиданием и дисперсией, и, хотя эти оценки достаточно грубы, они требуют минимальной информации о рассматриваемой случайной величине.

Если возможные значения дискретной случайной величины Х неотрицательны и существует ее математическое ожидание ЕХ = а, то для любого числа с > 0 справедливо неравенство

Р (Х <с) >1 – а / с

Соответственно, выполняется и неравенство

Р (Х ≥ с) ≤ а / с

Эти неравенства называются (первым и вторым) неравенствами Маркова

Пример 9.4. Пусть X - время опоздания студента на

лекцию, причем известно, что ЕХ = 1 мин. Воспользовавшись

первым неравенством Чебышева, оценим вероятность Р{Х >5}

того, что студент опоздает не менее, чем на 5 мин.

Имеем P(X≥5) ≤EX/5

Таким образом, искомая вероятность не более 0,2, т.е. в среднем,

из каждых пяти студентов опаздывает по крайней мере на 5 мин не более чем один студент.

Если Х – случайная величина, математическое ожидание которой ЕХ = а, дисперсия DХ конечна, то для любого числа с > 0 выполняются неравенства

P (| X – a | ≥ c) ≤DX / c 2

P (| X – a | < c) >1 – DX / c 2

Данные неравенства называются (первым и вторым) неравенствами Чебышева

Замечание . Иногда и неравенства Маркова и неравенства Чебышева называются первым и вторым неравенствами Чебышева.

Пример . Пусть в условиях предыдущего примера известно дополнительно, что а = y/DX = 1. Оценим минимальное значение х о, при котором вероятность опоздания студента на время не менее х о не превышает заданного значения Р 3 = 0,1.

Для решения поставленной задачи воспользуемся неравенством Чебышева. Тогда

Р 3 ≤ Р{Х ≥х 0 } = Р{Х - ЕX ≥ х о - ЕX} ≤ Р{|Х – EХ| >х 0 - EX}≤

и

И, подставляя конкретные значения, имеем

Таким образом, вероятность опоздания студента на время более 4,16 мин не более 0,1.

Сравнивая полученный результат с результатом предыдущего примера можно заметить, что дополнительная информация о дисперсии времени опоздания позволяет дать более точную оценку искомой вероятности.

Замечание . Элементарным следствием из неравенства Чебышева является Закон больших чисел (в форме Чебышева):

Определение. (Начальным ) Моментом порядка k случайной величины Х называется число m k = Е(Х k)

Определение. (Центральным) моментом порядка k случайной величины Х называется число μ k = Е(Х–ЕХ) k

Замечание. Нетрудно видеть, что математическое ожидание – начальный момент первого порядка, а дисперсия – центральный момент второго порядка.

Замечание. Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = EX , то все ее центральные моменты нечетного порядка равны нулю.

появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения.

Определение . Асимметрией А случайной величины Х называют отношение третьего центрального момента к кубу среднеквадратичного отклонения. А=μ 3 / σ 3

(по Е.В.Сидоренко)

Асимметрия - величина, характеризующая степень асимметрии распределения относительно математического ожидания.: Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если больше нуля, то правее.

В тех случаях, когда какие-нибудь причины благоприятствуют более частому

появлению значений, которые выше или, наоборот, ниже среднего, образуются асимметричные распределения. При левосторонней, или положительной, асимметрии в распределении чаще встречаются более низкие значения признака, а при правосторонней,

или отрицательной - более высокие

Очевидно, что для случайной величины, распределенной симметрично относительно математического ожидания, асимметрия равна нулю.

В тех случаях, когда какие-либо причины способствуют преимущественному

появлению средних или близких к средним значений, образуется распределение с положительным эксцессом. Если же в распределении преобладают крайние значения, причем одновременно и более низкие, и более высокие, то такое распределение характеризуется отрицательным эксцессом и в центре распределения может образоваться впадина, превращающая его в двувершинное (см следующий рисунок эксцесса).

Определение . Эксцессом γ случайной величины Х называют отношение

 = (μ 4 / σ 4) –3

Эксцесс: а) положительный; 6) отрицательный. В распределениях с нормальной выпуклостью γ =0.

Нормальное распределение наиболее часто используется в теории вероятностей и в математической статистике, поэтому график плотности вероятностей нормального распределения стал своего рода эталоном, с которым сравнивают другие распределения. Одним из параметров, определяющих отличие распределения случайной величины Х от нормального распределения, как раз и является эксцесс. Для нормального распределения γ=0, если γ >0 , то это значит, что график плотности «заострен» сильнее, чем у нормального, а если γ<0, то, соответственно, меньше.

Определение . Квантилью уровня α или α-квантилью (0<α<1) называют число Q α , удовлетворяющее неравенствам Р{X < Q α }≤α и P{X> Q α } ≤ 1 – α

½ -квантиль называют также Медианой М случайной величины Х.

Для непрерывной случайной величины Х α-квантиль Q α – это такое число, меньше которого Х принимает значение с вероятностью α.

Если известна плотность распределения ρ(х) случайной величины Х, то, учитывая связь между функцией распределения и плотностью, уравнение для определения квантили можно записать как

Иначе говоря, квантиль Q α – решение уравнения F(Q α)=α ,

Пример .

Найдем α-квантиль и медиану экспоненциального распределения

(Непрерывная случайная величина Х имеет показательное распределение с параметром  > 0, если она принимает только неотрицательные значения, а ее плотность распределения имеет вид: (х) = е -  х, x≥0 и 0, если х <0

, поэтому
, а медиана равна

Определение. Модой непрерывной случайной величины называют точку максимума (локального) плотности распределения р(х). Различают унимодальные (имеющие одну моду), бимодальные (имеющие две моды) и мулътимодальные (имеющие несколько мод) распределения.

Для определения моды дискретной случайной величины предположим сначала, что ее значения x 1 , … x n расположены в порядке возрастания.

Модой дискретной случайной величины называют такое значение х i , при котором для вероятностей выполняются неравенства

p i -1 < p i и p i +1 < р i

В случае дискретных случайных величин распределения также могут быть унимодальными, бимодальными и мультимодальными.

Наивероятнейшим значением называют моду, при которой достигается глобальный максимум вероятности (дискретной случайной величины) или плотности распределения (непрерывной случайной величины).

Если распределение унимодальное, то мода также будет наивероятнейшим значением.

Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычисления дисперсии можно использовать слегка преобразованную формулу

так как М(Х) , 2 и
– постоянные величины. Таким образом,

4.2.2. Свойства дисперсии

Свойство 1. Дисперсия постоянной величины равна нулю. Действительно, по определению

Свойство 2. Постоянный множитель можно выносить за знак дисперсии с возведением его в квадрат.

Доказательство

Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:

Центрированная величина обладает двумя удобными для преобразования свойствами:

Свойство 3. Если случайные величины Х иY независимы, то

Доказательство . Обозначим
. Тогдаи.

Во втором слагаемом в силу независимости случайных величин и свойств центрированных случайных величин

Пример 4.5. Еслиa иb – постоянные, тоD(a Х+ b )= D (a Х)+ D (b )=
.

4.2.3. Среднее квадратическое отклонение

Дисперсия, как характеристика разброса случайной величины, имеет один недостаток. Если, например, Х – ошибка измерения имеет размерность ММ , то дисперсия имеет размерность
. Поэтому часто предпочитают пользоваться другой характеристикой разброса –средним квадратическим отклонением , которое равно корню квадратному из дисперсии

Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.

Пример 4.6. Дисперсия числа появления события в схеме независимых испытаний

Производится n независимых испытаний и вероятность появления события в каждом испытании равнар . Выразим, как и прежде, число появления событияХ через число появления события в отдельных опытах:

Так как опыты независимы, то и связанные с опытами случайные величины независимы. А в силу независимостиимеем

Но каждая из случайных величин имеет закон распределения (пример 3.2)

и
(пример 4.4). Поэтому, по определению дисперсии:

где q =1- p .

В итоге имеем
,

Среднее квадратическое отклонение числа появлений события в n независимых опытах равно
.

4.3. Моменты случайных величин

Помимо уже рассмотренных случайные величины имеют множество других числовых характеристик.

Начальным моментом k Х (
) называется математическое ожиданиеk -й степени этой случайной величины.

Центральным моментом k -го порядка случайной величиныХ называется математическое ожиданиеk -ой степени соответствующей центрированной величины.

Легко видеть, что центральный момент первого порядка всегда равен нулю, центральный момент второго порядка равен дисперсии, так как .

Центральный момент третьего порядка дает представление об асимметрии распределения случайной величины. Моменты порядка выше второго употребляются сравнительно редко, поэтому мы ограничимся только самими понятиями о них.

4.4. Примеры нахождения законов распределения

Рассмотрим примеры нахождения законов распределения случайных величин и их числовых характеристик.

Пример 4.7.

Составить закон распределения числа попаданий в цель при трех выстрелах по мишени, если вероятность попадания при каждом выстреле равна 0,4. Найти интегральную функцию F (х) для полученного распределения дискретной случайной величиныХ и начертить ее график. Найти математическое ожиданиеM (X ) , дисперсиюD (X ) и среднее квадратическое отклонение
(Х ) случайной величиныX .

Решение

1) Дискретная случайная величина Х – число попаданий в цель при трех выстрелах – может принимать четыре значения:0, 1, 2, 3 . Вероятность того, что она примет каждое из них, найдем по формуле Бернулли при:n =3,p =0,4,q =1- p =0,6 иm =0, 1, 2, 3:

Получим вероятности возможных значений Х :;

Составим искомый закон распределения случайной величины Х :

Контроль: 0,216+0,432+0,288+0,064=1.

Построим многоугольник распределения полученной случайной величины Х . Для этого в прямоугольной системе координат отметим точки (0; 0,216), (1; 0,432), (2; 0,288), (3; 0,064). Соединим эти точки отрезками прямых, полученная ломаная и есть искомый многоугольник распределения (рис. 4.1).

2) Если х0, то F (х) =0. Действительно, значений, меньших нуля, величина Х не принимает. Следовательно, при всех х 0 , пользуясь определениемF (х) , получим F (х) =P (X < x ) =0 (как вероятность невозможного события).

Если 0, тоF (X ) =0,216. Действительно, в этом случаеF (х) =P (X < x ) = =P (- < X0)+ P (0< X < x ) =0,216+0=0,216.

Если взять, например, х =0,2, тоF (0,2)=P (X <0,2) . Но вероятность событияХ <0,2 равна 0,216, так как случайная величинаХ лишь в одном случае принимает значение меньшее 0,2, а именно0 с вероятностью 0,216.

Если 1, то

Действительно, Х может принять значение 0 с вероятностью 0,216 и значение 1 с вероятностью 0,432; следовательно, одно из этих значений, безразлично какое,Х может принять (по теореме сложения вероятностей несовместных событий) с вероятностью 0,648.

Если 2, то рассуждая аналогично, получимF (х) =0,216+0,432 + + 0,288=0,936. Действительно, пусть, например,х =3. ТогдаF (3)=P (X <3) выражает вероятность событияX <3 – стрелок сделает меньше трех попаданий, т.е. ноль, один или два. Применяя теорему сложения вероятностей, получим указанное значение функцииF (х) .

Если x >3, тоF (х) =0,216+0,432+0,288+0,064=1. Действительно, событиеX
является достоверным и вероятность его равна единице, аX >3 – невозможным. Учитывая, что

F (х) =P (X < x ) =P (X3) + P (3< X < x ) , получим указанный результат.

Итак, получена искомая интегральная функция распределения случайной величины Х:

F (x ) =

график которой изображен на рис. 4.2.

3) Математическое ожидание дискретной случайной величины равно сумме произведений всех возможных значений Х на их вероятности:

М(Х) =0=1,2.

То есть, в среднем происходит одно попадание в цель при трех выстрелах.

Дисперсию можно вычислить, исходя из определения дисперсии D (X )= M (X - M (X )) или воспользоваться формулойD (X )= M (X
, которая ведет к цели быстрее.

Напишем закон распределения случайной величины Х:

Найдем математическое ожидание для Х :

М(Х) = 04
= 2,16.

Вычислим искомую дисперсию:

D (X ) = M (X) – (M (X )) = 2,16 – (1,2)= 0,72.

Среднее квадратическое отклонение найдем по формуле

(X ) =
= 0,848.

Интервал (M - ; M + ) = (1,2-0,85; 1,2+0,85) = (0,35; 2,05) – интервал наиболее вероятных значений случайной величиныХ , в него попадают значения 1 и 2.

Пример 4.8.

Дана дифференциальная функция распределения (функция плотности) непрерывной случайной величины Х :

f (x ) =

1) Определить постоянный параметр a .

2) Найти интегральную функцию F (x ) .

3) Построить графики функций f (x ) иF (x ) .

4) Найти двумя способами вероятности Р(0,5< X1,5) иP (1,5< X <3,5) .

5). Найти математическое ожидание М(Х) , дисперсиюD (Х) и среднее квадратическое отклонение
случайной величиныХ .

Решение

1) Дифференциальная функция по свойству f (x ) должна удовлетворять условию
.

Вычислим этот несобственный интеграл для данной функции f (x ) :

Подставляя этот результат в левую часть равенства, получим, что а =1. В условии дляf (x ) заменим параметра на 1:

2) Для нахождения F (x ) воспользуемся формулой

.

Если х
, то
, следовательно,

Если 1
то

Если x>2, то

Итак, искомая интегральная функция F (x ) имеет вид:

3) Построим графики функций f (x ) иF (x ) (рис. 4.3 и 4.4).

4) Вероятность попадания случайной величины в заданный интервал (а, b ) вычисляется по формуле
, если известнафункция f (x ), и по формуле P (a < X < b ) = F (b ) – F (a ), если известна функция F (x ).

Найдем
по двум формулам и сравним результаты. По условиюа=0,5; b =1,5; функцияf (X ) задана в пункте 1). Следовательно, искомая вероятность по формуле равна:

Та же вероятность может быть вычислена по формуле b) через приращение полученной в п.2). интегральной функцииF (x ) на этом интервале:

Так какF (0,5)=0.

Аналогично находим

так как F (3,5)=1.

5) Для нахождения математического ожидания М(Х) воспользуемся формулой
Функцияf (x ) задана в решении пункта 1), она равна нулю вне интервала (1,2]:

Дисперсия непрерывной случайной величиныD (Х) определяется равенством

, или равносильным равенством


.

ДлянахожденияD (X ) воспользуемся последней формулой и учтем, что все возможные значенияf (x ) принадлежат интервалу (1,2]:

Среднее квадратическое отклонение
=
=0,276.

Интервал наиболее вероятных значений случайной величины Х равен

(М-
,М+
) = (1,58-0,28; 1,58+0,28) = (1,3; 1,86).

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания. Пусть масса некоторого вещества распределена между точками оси абсцисс x 1 , x 2 , ..., x n . При этом каждая материальная точка имеет соответствующую ей массу с вероятностью из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

Число Прибыль x i Вероятность p i x i p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всего: 1,00 25000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .

Подсказка: вероятность значений случайной величины найти по формуле Бернулли .

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение X Вероятность
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значение Y Вероятность
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1 Проект 2 Проект 3 Проект 4
500, P =1 1000, P =0,5 500, P =0,5 500, P =0,5
0, P =0,5 1000, P =0,25 10500, P =0,25
0, P =0,25 9500, P =0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

В таблице обобщены найденные величины для всех альтернатив.

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:

E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .

Закон распределения случайной величины:

X −3 7
p 0,3 0,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D (X ) = 2,7 + 34,3 − 16 = 21 .

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.

Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Отсюда математическое ожидание данной случайной величины:

M (X ) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсия данной случайной величины:

D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .

Кроме характеристик положения – средних, типичных значений случайной величины, - употребляется еще ряд характеристик, каждая из которых описывает то или иное свойство распределения. В качестве таких характеристик чаще всего применяются так называемые моменты.

Понятие момента широко применяется в механике для описания распределения масс (статические моменты, моменты инерции и т.д.). Совершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.

Начальным моментом s-го порядка прерывной случайной величины называется сумма вида:

. (5.7.1)

Очевидно, это определение совпадает с определением начального момента порядка s в механике, если на оси абсцисс в точках сосредоточены массы .

Для непрерывной случайной величины Х начальным моментом s-го порядка называется интеграл

. (5.7.2)

Нетрудно убедиться, что введенная в предыдущем n° основная характеристика положения – математическое ожидание – представляет собой не что иное, как первый начальный момент случайной величины .

Пользуясь знаком математического ожидания, можно объединить две формулы (5.7.1) и (5.7.2) в одну. Действительно, формулы (5.7.1) и (5.7.2) по структуре полностью аналогичны формулам (5.6.1) и (5.6.2), с той разницей, что в них вместо и стоят, соответственно, и . Поэтому можно написать общее определение начального момента -го порядка, справедливое как для прерывных, так и для непрерывных величин:

, (5.7.3)

т.е. начальным моментом -го порядка случайной величины называется математическое ожидание -й степени этой случайной величины.

Перед тем, как дать определение центрального момента, введем новое понятие «центрированной случайной величины».

Пусть имеется случайная величина с математическим ожиданием . Центрированной случайной величиной, соответствующей величине , называется отклонение случайной величины от её математического ожидания:

Условимся в дальнейшем везде обозначать центрированную случайную величину, соответствующую данной случайной величине, той же буквой со значком наверху.

Нетрудно убедиться, что математическое ожидание центрированной случайной величины равно нулю. Действительно, для прерывной величины

аналогично и для непрерывной величины.

Центрирование случайной величины, очевидно, равносильно переносу начала координат в среднюю, «центральную» точку, абсцисса которой равна математическому ожиданию.

Моменты центрированной случайной величины носят название центральных моментов. Они аналогичны моментам относительно центра тяжести в механике.

Таким образом, центральным моментом порядка s случайной величины называется математическое ожидание -й степени соответствующей центрированной случайной величины:

, (5.7.6)

а для непрерывной – интегралом

. (5.7.8)

В дальнейшем в тех случаях, когда не возникает сомнений, к какой случайной величине относится данный момент, мы будем для краткости вместо и писать просто и .

Очевидно, для любой случайной величины центральный момент первого порядка равен нулю:

, (5.7.9)

так как математическое ожидание центрированной случайной величины всегда равно нулю.

Выведем соотношения, связывающие центральные и начальные моменты различных порядков. Вывод мы проведем только для прерывных величин; легко убедится, что точно те же соотношения справедливы и для непрерывных величин, если заменить конечные суммы интегралами, а вероятности – элементами вероятности.

Рассмотрим второй центральный момент:

Аналогично для третьего центрального момента получим:

Выражения для и т.д. могут быть получены аналогичным путем.

Таким образом, для центральных моментов любой случайной величины справедливы формулы:

(5.7.10)

Вообще говоря, моменты могут рассматриваться не только относительно начала координат (начальные моменты) или математического ожидания (центральные моменты), но и относительно произвольной точки :

. (5.7.11)

Однако центральные моменты имеют перед всеми другими преимущество: первый центральный момент, как мы видели, всегда равен нулю, а следующий за ним, второй центральный момент при этой системе отсчета имеет минимальное значение. Докажем это. Для прерывной случайной величины при формула (5.7.11) имеет вид:

. (5.7.12)

Преобразуем это выражение:

Очевидно, эта величина достигает своего минимума, когда , т.е. когда момент берется относительно точки .

Из всех моментов в качестве характеристик случайной величины чаще всего применяются первый начальный момент (математическое ожидание) и второй центральный момент .

Второй центральный момент называется дисперсией случайной величины. Ввиду крайней важности этой характеристики среди других моментов введем для нее специальное обозначение :

Согласно определению центрального момента

, (5.7.13)

т.е. дисперсией случайной величины Х называется математическое ожидание квадрата соответствующей центрированной величины.

Заменяя в выражении (5.7.13) величину её выражением, имеем также:

. (5.7.14)

Для непосредственного вычисления дисперсии служат формулы:

, (5.7.15)

(5.7.16)

Соответственно для прерывных и непрерывных величин.

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания. Само слово «дисперсия» означает «рассеивание».

Если обратиться к механической интерпретации распределения, то дисперсия представляет собой не что иное, как момент инерции заданного распределения масс относительно центра тяжести (математического ожидания).

Дисперсия случайной величины имеет размерность квадрата случайной величины; для наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из дисперсии извлекают квадратный корень. Полученная величина называется средним квадратическим отклонением (иначе – «стандартом») случайной величины . Среднее квадратическое отклонение будем обозначать :

, (5.7.17)

Для упрощения записей мы часто будем пользоваться сокращенными обозначениями среднего квадратического отклонения и дисперсии: и . В случае, когда не возникает сомнения, к какой случайной величине относятся эти характеристики, мы будем иногда опускать значок х у и и писать просто и . Слова «среднее квадратическое отклонение» иногда будем сокращенно заменять буквами с.к.о.

На практике часто применяется формула, выражающая дисперсию случайной величины через её второй начальный момент (вторая из формул (5.7.10)). В новых обозначениях она будет иметь вид:

Математическое ожидание и дисперсия (или среднее квардратическое отклонение ) – наиболее часто применяемые характеристики случайной величины. Они характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания распределения применяются моменты высших порядков.

Третий центральный момент служит для характеристики асимметрии (или «скошенности») распределения. Если распределение симметрично относительно математического ожидания (или, в механической интерпретации, масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю. Действительно, в сумме

при симметричном относительно законе распределения и нечетном каждому положительному слагаемому соответствует равное ему по абсолютной величине отрицательное слагаемое, так что вся сумма равна нулю. То же, очевидно, справедливо и для интеграла

,

который равен нулю, как интеграл в симметричных пределах от нечетной функции.

Естественно поэтому в качестве характеристики асимметрии распределения выбрать какой-либо из нечетных моментов. Простейший из них есть третий центральный момент. Он имеет размерность куба случайной величины: чтобы получить безразмерную характеристику, третий момент делят на куб среднего квадратического отклонения. Полученная величина носит название «коэффициент асимметрии» или просто «асимметрии»; мы обозначим её :

На рис. 5.7.1 показано два асимметричных распределения; одно из них (кривая I) имеет положительную асимметрию (); другое (кривая II) – отрицательную ().

Четвертый центральный момент служит для характеристики так называемой «крутости», т.е. островершинности или плосковершинности распределения. Эти свойства распределения описываются с помощью так называемого эксцесса. Эксцессом случайной величины называется величина

Число 3 вычитается из отношения потому, что для весьма важного и широко распространенного в природе нормального закона распределения (с которым мы подробно познакомимся в дальнейшем) . Таки образом, для нормального распределения эксцесс равен нулю; кривые, более островершинные по сравнении с нормальной, обладают положительным эксцессом; кривые более плосковершинные – отрицательным эксцессом.

На рис. 5.7.2 представлены: нормальное распределение (кривая I), распределение с положительным эксцессом (кривая II) и распределение с отрицательным эксцессом (кривая III).

Кроме рассмотренных выше начальных и центральных моментов, на практике иногда применяются так называемые абсолютные моменты (начальные и центральные), определяемые формулами

Очевидно, абсолютные моменты четных порядков совпадают с обычными моментами.

Из абсолютных моментов наиболее часто применяется первый абсолютный центральный момент

, (5.7.21)

называемый средним арифметическим отклонением. Наряду с дисперсией и средним квадратическим отклонением среднее арифметическое отклонение иногда применяется как характеристика рассеивания.

Математическое ожидание, мода, медиана, начальные и центральные моменты и, в частности, дисперсия, среднее квадратическое отклонение, асимметрия и эксцесс представляют собой наиболее употребительные числовые характеристики случайных величин. Во многих задачах практики полная характеристика случайной величины – закон распределения – или не нужна, или не может быть получена. В этих случаях ограничиваются приблизительным описанием случайной величины с помощь. Числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения.

Очень часто числовыми характеристиками пользуются для приближенной замены одного распределения другим, причем обычно стремятся произвести эту замену так, чтобы сохранились неизменными несколько важнейших моментов.

Пример 1. Производится один опыт, в результате которого может появиться или не появиться событие , вероятность которого равна . Рассматривается случайная величина – число появлений события (характеристическая случайная величина события ). Определить её характеристики: математическое ожидание, дисперсию, среднее квадратическое отклонение.

Решение. Ряд распределения величины имеет вид:

где - вероятность непоявления события .

По формуле (5.6.1) находим математическое ожидание величины :

Дисперсию величины определяем по формуле (5.7.15):

(Предлагаем читателю получить тот же результат, выразив дисперсию через второй начальный момент).

Пример 2. Производится три независимых выстрела по мишени; вероятность попадания при каждом выстреле равна 0,4. случайная величина – число попаданий. Определить характеристики величины – математическое ожидание, дисперсию, с.к.о., асимметрию.

Решение. Ряд распределения величины имеет вид:

Вычисляем числовые характеристики величины :

Заметим, что те же характеристики могли бы быть вычислены значительно проще с помощью теорем о числовых характеристиках функций (см. главу 10).

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.