Формула нахождения a1 арифметической прогрессии. Определитель матрицы онлайн




Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:

Алгебраические дополнения. ∆ 1,2 = -(2·4-(-2·(-2))) = -4 ∆ 2,1 = -(2·4-5·3) = 7 ∆ 2,3 = -(-1·5-(-2·2)) = 1 ∆ 3,2 = -(-1·(-2)-2·3) = 4
A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

Матрица $A^{-1}$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^{-1}\cdot A=A\cdot A^{-1}=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Обратная матрица $A^{-1}$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^{-1}$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части .

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_{n\times n}$. Для того, чтобы найти обратную матрицу $A^{-1}$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $\Delta A\neq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_{ij}$ каждого элемента матрицы $A$ и записать матрицу $A_{n\times n}^{*}=\left(A_{ij} \right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$.

Матрицу ${A^{*}}^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (), третьего (), четвертого (). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части .

Пример №1

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cccc} 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & -1 & -9 & 0 \end{array} \right)$.

Так как все элементы четвёртого столбца равны нулю, то $\Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $\Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Ответ : матрицы $A^{-1}$ не существует.

Пример №2

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right)$. Выполнить проверку.

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$ \Delta A=\left| \begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right|=-5\cdot 8-7\cdot 9=-103. $$

Так как $\Delta A \neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения

\begin{aligned} & A_{11}=(-1)^2\cdot 8=8; \; A_{12}=(-1)^3\cdot 9=-9;\\ & A_{21}=(-1)^3\cdot 7=-7; \; A_{22}=(-1)^4\cdot (-5)=-5.\\ \end{aligned}

Составляем матрицу из алгебраических дополнений: $A^{*}=\left(\begin{array} {cc} 8 & -9\\ -7 & -5 \end{array}\right)$.

Транспонируем полученную матрицу: ${A^{*}}^T=\left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$). Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, имеем:

$$ A^{-1}=\frac{1}{-103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right) =\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right) $$

Итак, обратная матрица найдена: $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A^{-1}\cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$, а в виде $-\frac{1}{103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$:

$$ A^{-1}\cdot{A} =-\frac{1}{103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)\cdot\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right) =-\frac{1}{103}\cdot\left(\begin{array} {cc} -103 & 0 \\ 0 & -103 \end{array}\right) =\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right) =E $$

Ответ : $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$.

Пример №3

Найти обратную матрицу для матрицы $A=\left(\begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right)$. Выполнить проверку.

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$ \Delta A=\left| \begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right| = 18-36+56-12=26. $$

Так как $\Delta A\neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

$$ \begin{aligned} & A_{11}=(-1)^{2}\cdot\left|\begin{array}{cc} 9 & 4\\ 3 & 2\end{array}\right|=6;\; A_{12}=(-1)^{3}\cdot\left|\begin{array}{cc} -4 &4 \\ 0 & 2\end{array}\right|=8;\; A_{13}=(-1)^{4}\cdot\left|\begin{array}{cc} -4 & 9\\ 0 & 3\end{array}\right|=-12;\\ & A_{21}=(-1)^{3}\cdot\left|\begin{array}{cc} 7 & 3\\ 3 & 2\end{array}\right|=-5;\; A_{22}=(-1)^{4}\cdot\left|\begin{array}{cc} 1 & 3\\ 0 & 2\end{array}\right|=2;\; A_{23}=(-1)^{5}\cdot\left|\begin{array}{cc} 1 & 7\\ 0 & 3\end{array}\right|=-3;\\ & A_{31}=(-1)^{4}\cdot\left|\begin{array}{cc} 7 & 3\\ 9 & 4\end{array}\right|=1;\; A_{32}=(-1)^{5}\cdot\left|\begin{array}{cc} 1 & 3\\ -4 & 4\end{array}\right|=-16;\; A_{33}=(-1)^{6}\cdot\left|\begin{array}{cc} 1 & 7\\ -4 & 9\end{array}\right|=37. \end{aligned} $$

Составляем матрицу из алгебраических дополнений и транспонируем её:

$$ A^*=\left(\begin{array} {ccc} 6 & 8 & -12 \\ -5 & 2 & -3 \\ 1 & -16 & 37\end{array} \right); \; {A^*}^T=\left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, получим:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)= \left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A\cdot A^{-1}=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$, а в виде $\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)$:

$$ A\cdot{A^{-1}} =\left(\begin{array}{ccc} 1 & 7 & 3 \\ -4 & 9 & 4\\ 0 & 3 & 2\end{array} \right)\cdot \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right) =\frac{1}{26}\cdot\left(\begin{array} {ccc} 26 & 0 & 0 \\ 0 & 26 & 0 \\ 0 & 0 & 26\end{array} \right) =\left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array} \right) =E $$

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ : $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$.

Пример №4

Найти матрицу, обратную матрице $A=\left(\begin{array} {cccc} 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end{array} \right)$.

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу) . Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

$$ A_{11}=\left|\begin{array}{ccc} 7 & 5 & 2\\ 5 & 3 & 7\\ 8 & -8 & -3 \end{array}\right|=556;\; A_{12}=-\left|\begin{array}{ccc} 9 & 5 & 2\\ 7 & 3 & 7 \\ -4 & -8 & -3 \end{array}\right|=-300; $$ $$ A_{13}=\left|\begin{array}{ccc} 9 & 7 & 2\\ 7 & 5 & 7\\ -4 & 8 & -3 \end{array}\right|=-536;\; A_{14}=-\left|\begin{array}{ccc} 9 & 7 & 5\\ 7 & 5 & 3\\ -4 & 8 & -8 \end{array}\right|=-112. $$

Определитель матрицы $A$ вычислим по следующей формуле:

$$ \Delta{A}=a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}+a_{14}\cdot A_{14}=6\cdot 556+(-5)\cdot(-300)+8\cdot(-536)+4\cdot(-112)=100. $$

$$ \begin{aligned} & A_{21}=-77;\;A_{22}=50;\;A_{23}=87;\;A_{24}=4;\\ & A_{31}=-93;\;A_{32}=50;\;A_{33}=83;\;A_{34}=36;\\ & A_{41}=473;\;A_{42}=-250;\;A_{43}=-463;\;A_{44}=-96. \end{aligned} $$

Матрица из алгебраических дополнений: $A^*=\left(\begin{array}{cccc} 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end{array}\right)$.

Присоединённая матрица: ${A^*}^T=\left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end{array}\right)$.

Обратная матрица:

$$ A^{-1}=\frac{1}{100}\cdot \left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end{array} \right)= \left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right) $$

Проверка, при желании, может быть произведена так же, как и в предыдущих примерах.

Ответ : $A^{-1}=\left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.

Итак, сядем и начнем писать какие-нибудь числа. Например:
Писать можно любые числа, и их может быть сколько угодно (в нашем случае их). Сколько бы чисел мы не написали, мы всегда можем сказать, какое из них первое, какое - второе и так далее до последнего, то есть, можем их пронумеровать. Это и есть пример числовой последовательности:

Числовая последовательность
Например, для нашей последовательности:

Присвоенный номер характерен только для одного числа последовательности. Иными словами, в последовательности нет трех вторых чисел. Второе число (как и -ное число) всегда одно.
Число с номером называется -ным членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

В нашем случае:

Допустим, у нас есть числовая последовательность, в которой разница между соседствующими числами одинакова и равна.
Например:

и т.д.
Такая числовая последовательность называется арифметической прогрессией.
Термин «прогрессия» был введен римским автором Боэцием еще в 6 веке и понимался в более широком смысле, как бесконечная числовая последовательность. Название «арифметическая» было перенесено из теории непрерывных пропорций, которыми занимались древние греки.

Это числовая последовательность, каждый член которой равен предыдущему, сложенному с одним и тем же числом. Это число называется разностью арифметической прогрессии и обозначается.

Попробуй определить, какие числовые последовательности являются арифметической прогрессией, а какие нет:

a)
b)
c)
d)

Разобрался? Сравним наши ответы:
Является арифметической прогрессией - b, c.
Не является арифметической прогрессией - a, d.

Вернемся к заданной прогрессии () и попробуем найти значение ее -го члена. Существует два способа его нахождения.

1. Способ

Мы можем прибавлять к предыдущему значению числа прогрессии, пока не дойдем до -го члена прогрессии. Хорошо, что суммировать нам осталось немного - всего три значения:

Итак, -ой член описанной арифметической прогрессии равен.

2. Способ

А что если нам нужно было бы найти значение -го члена прогрессии? Суммирование заняло бы у нас не один час, и не факт, что мы не ошиблись бы при сложении чисел.
Разумеется, математики придумали способ, при котором не нужно прибавлять разность арифметической прогрессии к предыдущему значению. Присмотрись внимательно к нарисованному рисунку… Наверняка ты уже заметил некую закономерность, а именно:

Например, посмотрим, из чего складывается значение -го члена данной арифметической прогрессии:


Иными словами:

Попробуй самостоятельно найти таким способом значение члена данной арифметической прогрессии.

Рассчитал? Сравни свои записи с ответом:

Обрати внимание, что у тебя получилось точно такое же число, как и в предыдущем способе, когда мы последовательно прибавляли к предыдущему значению членов арифметической прогрессии.
Попробуем «обезличить» данную формулу - приведем ее в общий вид и получим:

Уравнение арифметической прогрессии.

Арифметические прогрессии бывают возрастающие, а бывают убывающие.

Возрастающие - прогрессии, в которых каждое последующее значение членов больше предыдущего.
Например:

Убывающие - прогрессии, в которых каждое последующее значение членов меньше предыдущего.
Например:

Выведенная формула применяется в расчете членов как в возрастающих, так и в убывающих членах арифметической прогрессии.
Проверим это на практике.
Нам дана арифметическая прогрессия, состоящая из следующих чисел: Проверим, какое получится -ое число данной арифметической прогрессии, если при его расчете использовать нашу формулу:


Так как, то:

Таким образом, мы убедились, что формула действует как в убывающей, так и в возрастающей арифметической прогрессии.
Попробуй самостоятельно найти -ой и -ый члены этой арифметической прогрессии.

Сравним полученные результаты:

Свойство арифметической прогрессии

Усложним задачу - выведем свойство арифметической прогрессии.
Допустим, нам дано такое условие:
- арифметическая прогрессия, найти значение.
Легко, скажешь ты и начнешь считать по уже известной тебе формуле:

Пусть, а, тогда:

Абсолютно верно. Получается, мы сначала находим, потом прибавляем его к первому числу и получаем искомое. Если прогрессия представлена маленькими значениями, то ничего сложного в этом нет, а если нам в условии даны числа? Согласись, есть вероятность ошибиться в вычислениях.
А теперь подумай, можно ли решить эту задачу в одно действие с использованием какой-либо формулы? Конечно да, и именно ее мы попробуем сейчас вывести.

Обозначим искомый член арифметической прогрессии как, формула его нахождения нам известна - это та самая формула, выведенная нами в начале:
, тогда:

  • предыдущий член прогрессии это:
  • последующий член прогрессии это:

Просуммируем предыдущий и последующий члены прогрессии:

Получается, что сумма предыдущего и последующего членов прогрессии - это удвоенное значение члена прогрессии, находящегося между ними. Иными словами, чтобы найти значение члена прогрессии при известных предыдущих и последовательных значениях, необходимо сложить их и разделить на.

Все верно, мы получили это же число. Закрепим материал. Посчитай значение для прогрессии самостоятельно, ведь это совсем несложно.

Молодец! Ты знаешь о прогрессии почти все! Осталось узнать только одну формулу, которую по легендам без труда вывел для себя один из величайших математиков всех времен, «король математиков» - Карл Гаусс...

Когда Карлу Гауссу было 9 лет, учитель, занятый проверкой работ учеников других классов, задал на уроке следующую задачу: «Сосчитать сумму всех натуральных чисел от до (по другим источникам до) включительно». Каково же было удивление учителя, когда один из его учеников (это и был Карл Гаусс) через минуту дал правильный ответ на поставленную задачу, при этом, большинство одноклассников смельчака после долгих подсчетов получили неправильный результат…

Юный Карл Гаусс заметил некоторую закономерность, которую без труда заметишь и ты.
Допустим, у нас есть арифметическая прогрессия, состоящая из -ти членов: Нам необходимо найти сумму данных членов арифметической прогрессии. Конечно, мы можем вручную просуммировать все значения, но что делать, если в задании необходимо будет найти сумму ее членов, как это искал Гаусс?

Изобразим заданную нам прогрессию. Присмотрись внимательно к выделенным числам и попробуй произвести с ними различные математические действия.


Попробовал? Что ты заметил? Правильно! Их суммы равны


А теперь ответь, сколько всего наберется таких пар в заданной нам прогрессии? Конечно, ровно половина всех чисел, то есть.
Исходя из того, что сумма двух членов арифметической прогрессии равна, а подобных равных пар, мы получаем, что общая сумма равна:
.
Таким образом, формула для суммы первых членов любой арифметической прогрессии будет такой:

В некоторых задачах нам неизвестен -й член, но известна разность прогрессии. Попробуй подставить в формулу суммы, формулу -го члена.
Что у тебя получилось?

Молодец! Теперь вернемся к задаче, которую задали Карлу Гауссу: посчитай самостоятельно, чему равна сумма чисел, начиная от -го, и сумма чисел начиная от -го.

Сколько у тебя получилось?
У Гаусса получилось, что сумма членов равна, а сумма членов. Так ли ты решал?

На самом деле формула суммы членов арифметической прогрессии была доказана древнегреческим ученым Диофантом еще в 3 веке, да и на протяжении всего этого времени остроумные люди вовсю пользовались свойствами арифметической прогрессии.
Например, представь Древний Египет и самую масштабную стройку того времени - строительство пирамиды… На рисунке представлена одна ее сторона.

Где же здесь прогрессия скажешь ты? Посмотри внимательно и найди закономерность в количестве песчаных блоков в каждом ряде стены пирамиды.


Чем не арифметическая прогрессия? Посчитай, сколько всего блоков необходимо для строительства одной стены, если в основание кладется блочных кирпичей. Надеюсь, ты не будешь считать, водя пальцем по монитору, ты же помнишь последнюю формулу и все, что мы говорили об арифметической прогрессии?

В данном случае прогрессия выглядит следующим образом: .
Разность арифметической прогрессии.
Количество членов арифметической прогрессии.
Подставим в последние формулы наши данные (посчитаем количество блоков 2 способами).

Способ 1.

Способ 2.

А теперь можно и на мониторе посчитать: сравни полученные значения с тем количеством блоков, которое есть в нашей пирамиде. Сошлось? Молодец, ты освоил сумму -ных членов арифметической прогрессии.
Конечно, из блоков в основании пирамиду не построишь, а вот из? Попробуй рассчитать, сколько необходимо песчаных кирпичей, чтобы построить стену с таким условием.
Справился?
Верный ответ - блоков:

Тренировка

Задачи:

  1. Маша приходит в форму к лету. Ежедневно она увеличивает количество приседаний на. Сколько раз будет приседать Маша через недели, если на первой тренировке она сделала приседаний.
  2. Какова сумма всех нечетных чисел, содержащихся в.
  3. Лесорубы при хранении бревен укладывают их таким образом, что каждый верхний слой содержит на одно бревно меньше, чем предыдущий. Сколько бревен находится в одной кладке, если основанием кладки служат бревен.

Ответы:

  1. Определим параметры арифметической прогрессии. В данном случае
    (недели = дней).

    Ответ: Через две недели Маша должна приседать раз в день.

  2. Первое нечетное число, последнее число.
    Разность арифметической прогрессии.
    Количество нечетных чисел в - половина, однако, проверим этот факт, используя формулу нахождения -ного члена арифметической прогрессии:

    В числах действительно содержится нечетных чисел.
    Имеющиеся данные подставим в формулу:

    Ответ: Сумма всех нечетных чисел, содержащихся в, равна.

  3. Вспомним задачу про пирамиды. Для нашего случая, a , так как каждый верхний слой уменьшается на одно бревно, то всего в кучке слоев, то есть.
    Подставим данные в формулу:

    Ответ: В кладке находится бревен.

Подведем итоги

  1. - числовая последовательность, в которой разница между соседними числами одинакова и равна. Она бывает возрастающей и убывающей.
  2. Формула нахождения -го члена арифметической прогрессии записывается формулой - , где - количество чисел в прогрессии.
  3. Свойство членов арифметической прогрессии - - где - количество чисел в прогрессии.
  4. Сумму членов арифметической прогрессии можно найти двумя способами:

    , где - количество значений.

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. СРЕДНИЙ УРОВЕНЬ

Числовая последовательность

Давай сядем и начнем писать какие-нибудь числа. Например:

Писать можно любые числа, и их может быть сколько угодно. Но всегда можно сказать, какое из них первое, какое - второе и так далее, то есть, можем их пронумеровать. Это и есть пример числовой последовательности.

Числовая последовательность - это множество чисел, каждому из которых можно присвоить уникальный номер.

Другими словами, каждому числу можно поставить в соответствие некое натуральное число, причем единственное. И этот номер мы не присвоим больше никакому другому числу из данного множества.

Число с номером называется -ым членом последовательности.

Всю последовательность мы обычно называем какой-нибудь буквой (например,), и каждый член этой последовательности - той же буквой с индексом, равным номеру этого члена: .

Очень удобно, если -ый член последовательности можно задать какой-нибудь формулой. Например, формула

задает последовательность:

А формула - такую последовательность:

Например, арифметической прогрессией является последовательность (первый член здесь равен, а разность). Или (, разность).

Формула n-го члена

Рекуррентной мы называем такую формулу, в которой чтобы узнать -ый член, нужно знать предыдущий или несколько предыдущих:

Чтобы найти по такой формуле, например, -ый член прогрессии, нам придется вычислить предыдущие девять. Например, пусть. Тогда:

Ну что, ясно теперь какая формула?

В каждой строке мы к прибавляем, умноженное на какое-то число. На какое? Очень просто: это номер текущего члена минус:

Теперь намного удобнее, правда? Проверяем:

Реши сам:

В арифметической прогрессии найти формулу n-го члена и найти сотый член.

Решение:

Первый член равен. А чему равна разность? А вот чему:

(она ведь потому и называется разностью, что равна разности последовательных членов прогрессии).

Итак, формула:

Тогда сотый член равен:

Чему равна сумма всех натуральных чисел от до?

По легенде, великий математик Карл Гаусс, будучи 9-летним мальчиком, посчитал эту сумму за несколько минут. Он заметил, что сумма первого и последнего числа равна, сумма второго и предпоследнего - тоже, сумма третьего и 3-го с конца - тоже, и так далее. Сколько всего наберется таких пар? Правильно, ровно половина количества всех чисел, то есть. Итак,

Общая формула для суммы первых членов любой арифметической прогрессии будет такой:

Пример:
Найдите сумму всех двузначных чисел, кратных.

Решение:

Первое такое число - это. Каждое следующее получается добавлением к предыдущему числа. Таким образом, интересующие нас числа образуют арифметическую прогрессию с первым членом и разностью.

Формула -го члена для этой прогрессии:

Сколько членов в прогрессии, если все они должны быть двузначными?

Очень легко: .

Последний член прогрессии будет равен. Тогда сумма:

Ответ: .

Теперь реши сам:

  1. Ежедневно спортсмен пробегает на м больше, чем в предыдущий день. Сколько всего километров он пробежит за недели, если в первый день он пробежал км м?
  2. Велосипедист проезжает каждый день на км больше, чем в предыдущий. В первый день он проехал км. Сколько дней ему надо ехать, чтобы преодолеть км? Сколько километров он проедет за последний день пути?
  3. Цена холодильника в магазине ежегодно уменьшается на одну и ту же сумму. Определите, на сколько каждый год уменьшалась цена холодильника, если, выставленный на продажу за рублей, через шесть лет был продан за рублей.

Ответы:

  1. Здесь самое главное - распознать арифметическую прогрессию, и определить ее параметры. В данном случае, (недели = дней). Определить нужно сумму первых членов этой прогрессии:
    .
    Ответ:
  2. Здесь дано: , надо найти.
    Очевидно, нужно использовать ту же формулу суммы, что и в предыдущей задаче:
    .
    Подставляем значения:

    Корень, очевидно, не подходит, значит, ответ.
    Посчитаем путь, пройденный за последний день с помощью формулы -го члена:
    (км).
    Ответ:

  3. Дано: . Найти: .
    Проще не бывает:
    (руб).
    Ответ:

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ. КОРОТКО О ГЛАВНОМ

Это числовая последовательность, в которой разница между соседними числами одинакова и равна.

Арифметическая прогрессия бывает возрастающей () и убывающей ().

Например:

Формула нахождения n-ого члена арифметической прогрессии

записывается формулой, где - количество чисел в прогрессии.

Свойство членов арифметической прогрессии

Оно позволяет легко найти член прогрессии, если известны его соседние члены - где - количество чисел в прогрессии.

Сумма членов арифметической прогрессии

Существует два способа нахождения суммы:

Где - количество значений.

Где - количество значений.

Для любой невырожденной матрицы А существует и притом единственная матрица A -1 такая, что

A*A -1 =A -1 *A = E,

где E — единичная матрица тех же порядков, что и А. Матрица A -1 называется обратной к матрице A.

Если кто-то забыл, в единичной матрице, кроме диагонали, заполненной единицами, все остальные позиции заполнены нулями, пример единичной матрицы:

Нахождение обратной матрицы методом присоединённой матрицы

Обратная матрица определяется формулой:

где A ij - элементов a ij .

Т.е. для вычисления обратной матрицы, нужно вычислить определитель этой матрицы. Затем найти алгебраические дополнения для всех её элементов и составить из них новую матрицу. Далее нужно транспортировать эту матрицу. И каждый элемент новой матрицы поделить на определитель исходной матрицы.

Рассмотрим несколько примеров.

Найти A -1 для матрицы

Р е ш е н и е. Найдём A -1 методом присоединённой матрицы. Имеем det A = 2. Найдём алгебраические дополнения элементов матрицы A. В данном случае алгебраическими дополнениями элементов матрицы будут соответствующие элементы самой матрицы, взятые со знаком в соответствии с формулой

Имеем A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. Образуем присоединённую матрицу

Транспортируем матрицу A*:

Находим обратную матрицу по формуле:

Получаем:

Методом присоединённой матрицы найти A -1 , если

Р е ш е н и е. Прежде всего вычисляем определитесь данной матрицы, чтобы убедиться в существовании обратной матрицы. Имеем

Здесь мы прибавили к элементам второй строки элементы третьей строки, умноженные предварительно на (-1), а затем раскрыли определитель по второй строке. Так как определитесь данной матрицы отличен от нуля, то обратная к ней матрица существует. Для построения присоединённой матрицы находим алгебраические дополнения элементов данной матрицы. Имеем

В соответствии с формулой

транспортируем матрицу A*:

Тогда по формуле

Нахождение обратной матрицы методом элементарных преобразований

Кроме метода нахождения обратной матрицы, вытекающего из формулы (метод присоединенной матрицы), существует метод нахождения обратной матрицы, называемый методом элементарных преобразований.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для нахождения матрицы A -1 построим прямоугольную матрицу В = (А|Е) порядков (n; 2n), приписывая к матрице А справа единичную матрицу Е через разделительную черту:

Рассмотрим пример.

Методом элементарных преобразований найти A -1 , если

Р е ш е н и е. Образуем матрицу B:

Обозначим строки матрицы B через α 1 , α 2 , α 3 . Произведём над строками матрицы B следующие преобразования.